多线程 死锁详解

464次阅读  |  发布于4年以前

一、什么是死锁

当两个或两个以上的线程在执行过程中,因为争夺资源而造成的一种相互等待的状态,由于存在一种环路的锁依赖关系而永远地等待下去,如果没有外部干涉,他们将永远等待下去,此时的这个状态称之为死锁。

经典的 "哲学家进餐" 问题很好地描述了死锁状况:

 5个哲学家去吃中餐,坐在一张圆桌旁,他们有5根筷子(而不是5双),并且每两个人中间
放一根筷子,哲学家们要么在思考,要么在进餐,每个人都需要一双筷子才能吃到东西,并在吃
完后将筷子放回原处继续思考,有些筷子管理算法(1)能够使每个人都能相对及时的吃到东西,但
有些算法却可能导致一些或者所有哲学家都"饿死",后一种情况将产生死锁:每个人都拥有其他
人需要的资源,同时有等待其他人已经拥有的资源,并且每个人在获取所有需要的资源之前都不
会放弃已经拥有的资源。筷子管理算法(1):一个饥饿的科学家会尝试获得两根临近的筷子,但如果其中一根正在被另一个科学家使用,那么他将放弃已经得到的那根筷子,并在等待几分钟之后尝试

死锁:每个人都立即抓住自己左边的筷子,然后等待自己右边的筷子空出来,但同时又不放下已经拿到的筷子,形成一种相互等待的状态。饥饿:哲学家们都同时想吃饭,同时拿起左手边筷子,但是发现右边没有筷子,于是哲学家又同时放下左手边筷子,然后大家发现又有筷子了,又同时开始拿起左手边筷子,又同时放下,然后反复进行。

在线程A持有锁L并想获得锁M的同时,线程B持有锁M并尝试获得锁L,那么这两个线程将永远地等待下去,这种情况就是死锁形式(或者称为"抱死")

二、死锁的四个必要条件

三、死锁实例

/**
 * 死锁类示例
 */
public class DeadLock implements Runnable {
    public int flag = 1;
    //静态对象是类的所有对象共享的
    private static Object o1 = new Object(), o2 = new Object();

    @Override
    public void run() { 
    System.out.println("flag:{}"+flag);
        if (flag == 1) { //先锁o1,再对o2加锁,环路等待条件
            synchronized (o1) {
                try {
                    Thread.sleep(500);
                } catch (Exception e) {
                    e.printStackTrace();
                }

                synchronized (o2) {
                   System.out.println("1");
                }
            }
        }
        if (flag == 0) {//先锁o2,在锁01
            synchronized (o2) {
                try {
                    Thread.sleep(500);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                synchronized (o1) {
                   System.out.println("0");
                }
            }
        }
    }

    public static void main(String[] args) {
        DeadLock td1 = new DeadLock();
        DeadLock td2 = new DeadLock();
        td1.flag = 1;
        td2.flag = 0;
        //td1,td2都处于可执行状态,但JVM线程调度先执行哪个线程是不确定的。
        //td2的run()可能在td1的run()之前运行
        new Thread(td1).start();
        new Thread(td2).start();


    }
}

1、当DeadLock 类的对象flag=1时(td1),先锁定o1,睡眠500毫秒2、而td1在睡眠的时候另一个flag==0的对象(td2)线程启动,先锁定o2,睡眠500毫秒3、td1睡眠结束后需要锁定o2才能继续执行,而此时o2已被td2锁定;4、td2睡眠结束后需要锁定o1才能继续执行,而此时o1已被td1锁定;5、td1、td2相互等待,都需要得到对方锁定的资源才能继续执行,从而死锁。

动态锁顺序死锁:
// 资金转账到账号
    public static void transferMoney(Account fromAccount,
                    Account toAccount,
                    DollarAmount amount)
            throws InsufficientFundsException {

        // 锁定汇款者的账户
        synchronized (fromAccount) {
            // 锁定到账者的账户
            synchronized (toAccount) {

                // 判断账户的余额不能为负数
                if (fromAccount.getBalance().compareTo(amount) < 0) {
                    throw new InsufficientFundsException();
                } else {

                    // 汇款者的账户减钱
                    fromAccount.debit(amount);

                    // 到账者的账户增钱
                    toAccount.credit(amount);
                }
            }
        }
    }

上面的代码看起来都是按照相同的顺序来获得锁的,按道理来说是没有问题,但是上述代码中上锁的顺序取决于传递给``的参数顺序,而这些参数顺序又取决于外部的输入

当一组java线程发生死锁的时候,那么这些线程永远不能再使用了,根据线程完成工作的不同,可能会造成应用程序的完全停止,或者某个特定的子系统不能再使用了,或者是性能降低,这个时候恢复应用程序的唯一方式就是中止并重启它,死锁造成的影响很少会立即显现出来,如果一个类发生死锁,并不意味着每次都会发生死锁,而只是表示有可能,当死锁出现的时候,往往是在最糟糕的时候——在高负载的情况下。

四、死锁的避免与检测

4.1 预防死锁
4.2 设置加锁顺序

如果两个线程(A和B),当A线程已经锁住了Z,而又去尝试锁住X,而X已经被线程B锁住,线程A和线程B分别持有对应的锁,而又去争夺其他一个锁(尝试锁住另一个线程已经锁住的锁)的时候,就会发生死锁,如下图:

两个线程试图以不同的顺序来获得相同的锁,如果按照相同的顺序来请求锁,那么就不会出现循环的加锁依赖性,因此也就不会产生死锁,每个需要锁Z和锁X的线程都以相同的顺序来获取Z和X,那么就不会发生死锁了,如下图所示:

这样死锁就永远不会发生。针对两个特定的锁,可以尝试按照锁对象的hashCode值大小的顺序,分别获得两个锁,这样锁总是会以特定的顺序获得锁,我们通过设置锁的顺序,来防止死锁的发生,在这里我们使用``方法来定义锁的顺序,这个方法将返回由Obejct.hashCode 返回的值,这样就可以消除死锁发生的可能性。

public class DeadLockExample3 {

    // 加时赛锁,在极少数情况下,如果两个hash值相等,使用这个锁进行加锁
    private static final Object tieLock = new Object();

    public void transferMoney(final Account fromAcct,
                    final Account toAcct,
                    final DollarAmount amount)
            throws InsufficientFundsException {
        class Helper {
            public void transfer() throws InsufficientFundsException {
                if (fromAcct.getBalance().compareTo(amount) < 0)
                    throw new InsufficientFundsException();
                else {
                    fromAcct.debit(amount);
                    toAcct.credit(amount);
                }
            }
        }
        // 得到两个锁的hash值
        int fromHash = System.identityHashCode(fromAcct);
        int toHash = System.identityHashCode(toAcct);

        // 根据hash值判断锁顺序,决定锁的顺序
        if (fromHash < toHash) {
            synchronized (fromAcct) {
                synchronized (toAcct) {
                    new Helper().transfer();
                }
            }

        } else if (fromHash > toHash) {
            synchronized (toAcct) {
                synchronized (fromAcct) {
                    new Helper().transfer();
                }
            }
        } else{ // 如果两个对象的hash相等,通过tieLock来决定加锁的顺序,否则又会重新引入死锁——加时赛锁
            synchronized (tieLock) {
                synchronized (fromAcct) {
                    synchronized (toAcct) {
                    new Helper().transfer();
                    }
                }
            }
        }
    }
}
4.3 支持定时的锁(超时放弃)

有一项技术可以检测死锁和从死锁中恢复过来,就是使用Lock类中的定时``会返回一个失败信息,如果超时时限比获取锁的时间要长很多,那么就可以在发生某个意外后重新获得控制权。如下图所示:

4.4 死锁避免

死锁防止方法能够防止发生死锁,但必然会降低系统并发性,导致低效的资源利用率,其中最具有代表性的避免死锁算法是银行家算法。

1、多个资源的银行家算法

上图中有五个进程,四个资源。左边的图表示已经分配的资源,右边的图表示还需要分配的资源。最右边的 E、P 以及 A 分别表示:总资源、已分配资源以及可用资源,注意这三个为向量,而不是具体数值,例如 A=(1020),表示 4 个资源分别还剩下 1/0/2/0。

检查一个状态是否安全的算法如下:

4.5 死锁检测
Jconsole是JDK自带的监控工具,在JDK/bin目录下可以找到。它用于连接正在运行的本地或者远程的JVM,对运行在Java应用程序的资源消耗和性能进行监控,并画出大量的图表,提供强大的可视化界面。而且本身占用的服务器内存很小,甚至可以说几乎不消耗。 
4.5 死锁恢复
1、撤销陷入死锁的所有进程,解除死锁,继续运行。
    2、逐个撤销陷入死锁的进程,回收其资源并重新分配,直至死锁解除。
        可选择符合下面条件之一的先撤销:
                    1.CPU消耗时间最少者
                    2.产生的输出量最小者
                    3.预计剩余执行时间最长者
                    4.分得的资源数量最少者后优先级最低者

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8