九种查找算法

470次阅读  |  发布于4年以前

时间、空间复杂度比较

1.顺序查找 平均时间复杂度:O(n) 空间复杂度:O(1) 查找条件:无序或有序

2.二分查找(折半查找) 平均时间复杂度 :O(log2n) 空间复杂度:O(1) 查找条件:有序

3.插值查找 平均时间复杂度 :O(log2(log2n)) 空间复杂度:O(1) 查找条件:有序

4.斐波那契查找 平均时间复杂度 :O(log2n) 空间复杂度:O(1) 查找条件:有序

5.哈希查找 平均时间复杂度 :O(1) 空间复杂度:O(n) 查找条件:无序或有序

6.二叉查找树(二叉搜索树查找) 平均时间复杂度 :O(log2n)

7.红黑树 平均时间复杂度 :O(log2n)

8.2-3树 平均时间复杂度 :O(log2n - log3n)

9.B树/B+树 平均时间复杂度 :O(log2n)

1 顺序查找

算法思路

对于任意一个序列,从一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

代码

#include <stdio.h>
#include <stdlib.h>
#define keyType int
//2020.05.24
typedef struct
{
    keyType key;//查找表中每个数据元素的值
}ElemType;

typedef struct
{
    ElemType *elem;//存放查找表中数据元素的数组
    int length;//记录查找表中数据的总数量
}SSTable;

//创建查询数据
void Create(SSTable **st,int length)
{
    (*st)=(SSTable*)malloc(sizeof(SSTable));
    (*st)->length=length;
    (*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
    printf("输入表中的数据元素:\n");
    //根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
    for (int i=1; i<=length; i++)
    {
        scanf("%d",&((*st)->elem[i].key));
    }
}

//顺序查找函数,其中key为要查找的元素
int Search_seq(SSTable *str,keyType key)
{
    //str->elem[0].key=key;//将关键字作为一个数据元素存放到查找表的第一个位置,起监视哨的作用
    int len = str->length;
    //从最后一个数据元素依次遍历,一直遍历到数组下标为0
    for(int i=1; i<len+1; i++)   //创建数据从数组下标为1开始,查询也从1开始
    {
        if(str->elem[i].key == key)
        {
            return i;
        }
    }
    //如果 i=0,说明查找失败;查找成功返回要查找元素key的位置i
    return 0;
}

int main()
{
    SSTable *str;
    int num;
    printf("请输入创建数据元素的个数:\n");
    scanf("%d",&num);
    Create(&str, num);
    getchar();
    printf("请输入要查找的数据:\n");
    int key;
    scanf("%d",&key);
    int location=Search_seq(str, key);
    if (location==0) {
        printf("查找失败");
    }else{
        printf("要查找的%d的顺序为:%d",key,location);
    }
    return 0;
}

运行结果

查找成功!

查找失败

2 二分查找(折半查找)

算法思路

  1. 确定查找范围low=0,high=N-1,计算中项mid=(low+high)/2。
  2. 若mid==x或low>=high,则结束查找;否则,向下继续。
  3. 若amid<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给low,并重新计算mid,转去执行步骤2;若mid>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给higt,并重新计算mid,转去执行步骤2。

说明

折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。 ——《大话数据结构》

代码

#include <stdio.h>
#include <stdlib.h>
#define keyType int
typedef struct
{
    keyType key;//查找表中每个数据元素的值
}ElemType;

typedef struct
{
    ElemType *elem;//存放查找表中数据元素的数组
    int length;//记录查找表中数据的总数量
}SSTable;

//创建查询数据
void Create(SSTable **st,int length)
{
    (*st)=(SSTable*)malloc(sizeof(SSTable));
    (*st)->length=length;
    (*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
    printf("输入表中的数据元素:\n");
    //根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
    for (int i=1; i<=length; i++)
    {
        scanf("%d",&((*st)->elem[i].key));
    }
}

//折半查找函数 key为要查找的元素
int Search_Bin(SSTable *str,keyType key)
{
    int low=1;//初始状态 low 指针指向第一个关键字
    int high=str->length;//high 指向最后一个关键字
    int mid;
    while (low<=high)
    {
        mid=(low+high)/2;//int 本身为整形,所以,mid 每次为取整的整数
        if(str->elem[mid].key==key)//如果 mid 指向的同要查找的相等,返回 mid 所指向的位置
        {
            return mid;
        }
        else if(str->elem[mid].key>key)//如果mid指向的关键字较大,则更新 high 指针的位置
        {
            high=mid-1;
        }
        //反之,则更新 low 指针的位置
        else
        {
            low=mid+1;
        }
    }
    return 0;
}

int main()
{
    SSTable *str;
    int num;
    printf("请输入创建数据元素的个数:\n");
    scanf("%d",&num);
    Create(&str, num);
    getchar();
    printf("请输入要查找的数据:\n");
    int key;
    scanf("%d",&key);
    int location=Search_Bin(str, key);
    if (location==0) {
        printf("没有查找到");
    }else{
        printf("要查找的%d的顺序为:%d",key,location);
    }
    return 0;
}

运行结果

查找成功

没有查找到

3 插值查找

插值查找基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找

算法思路

  1. 确定查找范围low=0,high=N-1,计算中项mid=low+(key-a[low])/(a[high]-a[low])*(high-low)。
  2. 若mid==x或low>=high,则结束查找;否则,向下继续。
  3. 若amid<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给low,并重新计算mid,转去执行步骤2;若mid>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给higt,并重新计算mid,转去执行步骤2。

说明

代码

#include<stdio.h>

int array[10] = { 1, 4, 9, 16, 27, 31, 33, 35, 45, 64 };

int InsertionSearch(int data)
{
    int low = 0;
    int high = 10 - 1;
    int mid = -1;
    int comparisons = 1;
    int index = -1;

    while(low <= high)
    {
       printf("比较 %d 次\n" , comparisons );
       printf("low : %d, list[%d] = %d\n", low, low, array[low]);
       printf("high : %d, list[%d] = %d\n", high, high, array[high]);

       comparisons++;
       mid = low + (((double)(high - low) / (array[high] - array[low])) * (data - array[low]));
       printf("mid = %d\n",mid);

       // 没有找到
       if(array[mid] == data)
       {
       index = mid;
           break;
        }
    else
    {
       if(array[mid] < data)
           {
               low = mid + 1;
           }
           else
       {
           high = mid - 1;
        }
     }
     }

     printf("比较次数: %d\n", --comparisons);
     return index;
}

int main()
{
    int location = InsertionSearch(27);  //测试代,查27,可以找到
    if(location != -1)
    {
    printf("查找元素顺序为: %d\n" ,(location+1));
     }
     else
     {
         printf("没有查找到");
     }
     return 0;
}

运行结果

运行结果

4 斐波那契查找

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1).

算法思路

  1. 相等,mid位置的元素即为所求
  2. 大于,low=mid+1,k-=2;
  3. 小于,high=mid-1,k-=1。

说明

low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

代码

#include "stdafx.h"
#include <memory>
#include  <iostream>
using namespace std;

const int max_size=20;//斐波那契数组的长度

/*构造一个斐波那契数组*/
void Fibonacci(int * F)
{
    F[0]=0;
    F[1]=1;
    for(int i=2;i<max_size;++i)
        F[i]=F[i-1]+F[i-2];
}

/*定义斐波那契查找法*/
int FibonacciSearch(int *a, int n, int key)  //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字
{
  int low=0;
  int high=n-1;

  int F[max_size];
  Fibonacci(F);//构造一个斐波那契数组F

  int k=0;
  while(n>F[k]-1)//计算n位于斐波那契数列的位置
      ++k;

  int  * temp;//将数组a扩展到F[k]-1的长度
  temp=new int [F[k]-1];
  memcpy(temp,a,n*sizeof(int));

  for(int i=n;i<F[k]-1;++i)
     temp[i]=a[n-1];

  while(low<=high)
  {
    int mid=low+F[k-1]-1;
    if(key<temp[mid])
    {
      high=mid-1;
      k-=1;
    }
    else if(key>temp[mid])
    {
     low=mid+1;
     k-=2;
    }
    else
    {
       if(mid<n)
           return mid; //若相等则说明mid即为查找到的位置
       else
           return n-1; //若mid>=n则说明是扩展的数值,返回n-1
    }
  }
  delete [] temp;
  return 0;
}

int main()
{
    int a[] = {0,1,4,35,47,53,62,78,88,99};
    int key=47;
    int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key);
    if(index == 0)
    {
       cout<<"没有找到"<<key;
    }
    else
    {
       cout<<key<<" 的位置是:"<<index;
    }
    return 0;
}

运行结果

47的位置为5

5 哈希查找

哈希表

我们使用一个下标范围比较大的数组来存储元素。可以设计一个函数(哈希函数, 也叫做散列函数),使得每个元素的关键字都与一个函数值(即数组下标)相对应,于是用这个数组单元来存储这个元素;也可以简单的理解为,按照关键字为每一个元素"分类",然后将这个元素存储在相应"类"所对应的地方。但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了"冲突",换句话说,就是把不同的元素分在了相同的"类"之中。后面我们将看到一种解决"冲突"的简便做法。

"直接定址"与"解决冲突"是哈希表的两大特点。

哈希函数

规则:通过某种转换关系,使关键字适度的分散到指定大小的的顺序结构中,越分散,则以后查找的时间复杂度越小,空间复杂度越高。

算法思路

如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。

  1. 用给定的哈希函数构造哈希表;
  2. 根据选择的冲突处理方法(常见方法:拉链法和线性探测法)解决地址冲突;
  3. 在哈希表的基础上执行哈希查找;

代码

#include<stdio.h>
#include<stdlib.h>

#define SUCCESS 1
#define UNSUCCESS 0
#define OVERFLOW -1
#define OK 1
#define ERROR -1
#define MAXNUM 9999     // 用于初始化哈希表的记录 key

typedef int Status;
typedef int KeyType;

// 哈希表中的记录类型
typedef struct
{
    KeyType key;
}RcdType;

// 哈希表类型
typedef struct
{
    RcdType *rcd;
    int size;
    int count;
    int *tag;
}HashTable;

// 哈希表每次重建增长后的大小
int hashsize[] = { 11, 31, 61, 127, 251, 503 };
int index = 0;

// 初始哈希表
Status InitHashTable(HashTable &H, int size)
{
    int i;
    H.rcd = (RcdType *)malloc(sizeof(RcdType)*size);
    H.tag = (int *)malloc(sizeof(int)*size);
    if (NULL == H.rcd || NULL == H.tag) return OVERFLOW;
    KeyType maxNum = MAXNUM;
    for (i = 0; i < size; i++)
    {
        H.tag[i] = 0;
        H.rcd[i].key = maxNum;
    }
    H.size = size;
    H.count = 0;
    return OK;
}

// 哈希函数:除留余数法
int Hash(KeyType key, int m)
{
    return (3 * key) % m;
}

// 处理哈希冲突:线性探测
void collision(int &p, int m)
{
    p = (p + 1) % m;
}

// 在哈希表中查询
Status SearchHash(HashTable H, KeyType key, int &p, int &c)
{
    p = Hash(key, H.size);
    int h = p;
    c = 0;
    while ((1 == H.tag[p] && H.rcd[p].key != key) || -1 == H.tag[p])
    {
        collision(p, H.size);  c++;
    }

    if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS;
    else return UNSUCCESS;
}

//打印哈希表
void printHash(HashTable H)
{
    int  i;
    printf("key : ");
    for (i = 0; i < H.size; i++)
        printf("%3d ", H.rcd[i].key);
    printf("\n");
    printf("tag : ");
    for (i = 0; i < H.size; i++)
        printf("%3d ", H.tag[i]);
    printf("\n\n");
}

// 函数声明:插入哈希表
Status InsertHash(HashTable &H, KeyType key);

// 重建哈希表
Status recreateHash(HashTable &H)
{
    RcdType *orcd;
    int *otag, osize, i;
    orcd = H.rcd;
    otag = H.tag;
    osize = H.size;

    InitHashTable(H, hashsize[index++]);
    //把所有元素,按照新哈希函数放到新表中
    for (i = 0; i < osize; i++)
    {
        if (1 == otag[i])
        {
            InsertHash(H, orcd[i].key);
        }
    }
    return OK;
}

// 插入哈希表
Status InsertHash(HashTable &H, KeyType key)
{
    int p, c;
    if (UNSUCCESS == SearchHash(H, key, p, c))
    { //没有相同key
        if (c*1.0 / H.size < 0.5)
        { //冲突次数未达到上线
            //插入代码
            H.rcd[p].key = key;
            H.tag[p] = 1;
            H.count++;
            return SUCCESS;
        }
        else recreateHash(H); //重构哈希表
    }
    return UNSUCCESS;
}

// 删除哈希表
Status DeleteHash(HashTable &H, KeyType key)
{
    int p, c;
    if (SUCCESS == SearchHash(H, key, p, c))
    {
        //删除代码
        H.tag[p] = -1;
        H.count--;
        return SUCCESS;
    }
    else return UNSUCCESS;
}

int main()
{
    printf("-----哈希表-----\n");
    HashTable H;
    int i;
    int size = 11;
    KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 };
    KeyType key;

    //初始化哈希表
    printf("初始化哈希表\n");
    if (SUCCESS == InitHashTable(H, hashsize[index++])) printf("初始化成功\n");

    //插入哈希表
    printf("插入哈希表\n");
    for (i = 0; i <= 7; i++)
    {
        key = array[i];
        InsertHash(H, key);
        printHash(H);
    }

    //删除哈希表
    printf("删除哈希表中key为12的元素\n");
    int p, c;
    if (SUCCESS == DeleteHash(H, 12))
    {
        printf("删除成功,此时哈希表为:\n");
        printHash(H);
    }

    //查询哈希表
    printf("查询哈希表中key为67的元素\n");
    if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\n");

    //再次插入,测试哈希表的重建
    printf("再次插入,测试哈希表的重建:\n");
    KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 };
    for (i = 0; i <= 7; i++)
    {
        key = array1[i];
        InsertHash(H, key);
        printHash(H);
    }

    getchar();
    return 0;
}

6 二叉树查找

二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

算法思路

  1. 若b是空树,则搜索失败:
  2. 若x等于b的根节点的数据域之值,则查找成功:
  3. 若x小于b的根节点的数据域之值,则搜索左子树:
  4. 查找右子树。

代码

递归和非递归

//非递归查找算法
BSTNode *BST_Search(BiTree T,ElemType key,BSTNode *&p)
{
    //查找函数返回指向关键字值为key的结点指针,不存在则返回NULL
    p=NULL;
    while(T!=NULL&&key!=T->data)
    {
        p=T;                          //指向被查找结点的双亲
        if(key<T->data)
            T=T->lchild;              //查找左子树
        else
            T=T->rchild;              //查找右子树
    }
    return T;
}

//递归算法
Status Search_BST(BiTree T, int key, BiTree f, BiTree *p)
{
    //查找BST中是否存在key,f指向T双亲,其初始值为NULL
    //若查找成功,指针p指向数据元素结点,返回true;
    //若失败,p指向查找路径上访问的最后一个结点并返回false
    if(!T)
    {
        *p=f;
        return false;
    }
    else if(key==T->data)
    {                      //查找成功
        *p=T;
        return true;
    }
    else if(key<T->data)
        return Search_BST(T->lchild,key,T,p);   //递归查找左子树
    else
        return Search_BST(T->rchild,key,T,p);   //递归查找右子树

}

7 2-3树

2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:

  1. 要么为空,要么:
  2. 对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。
  3. 对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。

算法思路:

要判断一个键是否在树中,我们先将它和根结点中的键比较。如果它和其中的任何一个相等,查找命中。否则我们就根据比较的结果找到指向相应区间的链接,并在其指向的子树中递归地继续查找。如果这是个空链接,查找未命中。

2-3 树中查找键为H的节点

2-3 树中查找键为B的节点

代码

two_three *search23(two_three *t, element x)
{
    while(t)
    {
        if (x < t->data_l)
        {
            t = t->left_child;
        }
        else if (x > t->data_l && x < t->data_r)
        {
            t = t->middle_child;
        }
        else if (x > t->data_r)
        {
            t = t->right_child;
        }
        else
        {
            return t;
        }
    }
    return NULL;
}

8 红黑树

2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。

理解红黑树一句话就够了:红黑树就是用红链接表示3-结点的2-3树

现在我们对2-3树进行改造,改造成一个二叉树。怎么改造呢?对于2节点,保持不变;对于3节点,我们首先将3节点中左侧的元素标记为红色,然后我们将其改造成图3的形式;

再将3节点的位于中间的子节点的父节点设置为父节点中那个红色的节点,如图4的所示;最后我们将图4的形式改为二叉树的样子,如图5所示。图5是不是很熟悉,没错,这就是我们常常提到的大名鼎鼎的红黑树了。如下图所示。

2-3树转红黑树

为什么使用红黑树

红黑树性质

算法思路

红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同

代码

#define BLACK 1
#define RED 0
#include <iostream>

using namespace std;

class bst
{
private:

    struct Node
    {
        int value;
        bool color;
        Node *leftTree, *rightTree, *parent;

        Node() : value(0), color(RED), leftTree(NULL), rightTree(NULL), parent(NULL) { }

        Node* grandparent()
        {
            if (parent == NULL)
            {
                return NULL;
            }
            return parent->parent;
        }

        Node* uncle()
        {
            if (grandparent() == NULL)
            {
                return NULL;
            }
            if (parent == grandparent()->rightTree)
                return grandparent()->leftTree;
            else
                return grandparent()->rightTree;
        }

        Node* sibling()
        {
            if (parent->leftTree == this)
                return parent->rightTree;
            else
                return parent->leftTree;
        }
    };

    void rotate_right(Node *p)
    {
        Node *gp = p->grandparent();
        Node *fa = p->parent;
        Node *y = p->rightTree;

        fa->leftTree = y;

        if (y != NIL)
            y->parent = fa;
        p->rightTree = fa;
        fa->parent = p;

        if (root == fa)
            root = p;
        p->parent = gp;

        if (gp != NULL)
        {
            if (gp->leftTree == fa)
                gp->leftTree = p;
            else
                gp->rightTree = p;
        }

    }

    void rotate_left(Node *p)
    {
        if (p->parent == NULL)
        {
            root = p;
            return;
        }
        Node *gp = p->grandparent();
        Node *fa = p->parent;
        Node *y = p->leftTree;

        fa->rightTree = y;

        if (y != NIL)
            y->parent = fa;
        p->leftTree = fa;
        fa->parent = p;

        if (root == fa)
            root = p;
        p->parent = gp;

        if (gp != NULL)
        {
            if (gp->leftTree == fa)
                gp->leftTree = p;
            else
                gp->rightTree = p;
        }
    }

    void inorder(Node *p)
    {
        if (p == NIL)
            return;

        if (p->leftTree)
            inorder(p->leftTree);

        cout << p->value << " ";

        if (p->rightTree)
            inorder(p->rightTree);
    }

    string outputColor(bool color)
    {
        return color ? "BLACK" : "RED";
    }

    Node* getSmallestChild(Node *p)
    {
        if (p->leftTree == NIL)
            return p;
        return getSmallestChild(p->leftTree);
    }

    bool delete_child(Node *p, int data)
    {
        if (p->value > data)
        {
            if (p->leftTree == NIL)
            {
                return false;
            }
            return delete_child(p->leftTree, data);
        }
        else if (p->value < data)
        {
            if (p->rightTree == NIL)
            {
                return false;
            }
            return delete_child(p->rightTree, data);
        }
        else if (p->value == data)
        {
            if (p->rightTree == NIL)
            {
                delete_one_child(p);
                return true;
            }
            Node *smallest = getSmallestChild(p->rightTree);
            swap(p->value, smallest->value);
            delete_one_child(smallest);

            return true;
        }
        else
        {
            return false;
        }
    }

    void delete_one_child(Node *p)
    {
        Node *child = p->leftTree == NIL ? p->rightTree : p->leftTree;
        if (p->parent == NULL && p->leftTree == NIL && p->rightTree == NIL)
        {
            p = NULL;
            root = p;
            return;
        }

        if (p->parent == NULL)
        {
            delete  p;
            child->parent = NULL;
            root = child;
            root->color = BLACK;
            return;
        }

        if (p->parent->leftTree == p)
        {
            p->parent->leftTree = child;
        }
        else
        {
            p->parent->rightTree = child;
        }
        child->parent = p->parent;

        if (p->color == BLACK)
        {
            if (child->color == RED)
            {
                child->color = BLACK;
            }
            else
                delete_case(child);
        }

        delete p;
    }

    void delete_case(Node *p)
    {
        if (p->parent == NULL)
        {
            p->color = BLACK;
            return;
        }
        if (p->sibling()->color == RED)
        {
            p->parent->color = RED;
            p->sibling()->color = BLACK;
            if (p == p->parent->leftTree)
                rotate_left(p->sibling());
            else
                rotate_right(p->sibling());
        }
        if (p->parent->color == BLACK && p->sibling()->color == BLACK
            && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK)
        {
            p->sibling()->color = RED;
            delete_case(p->parent);
        }
        else if (p->parent->color == RED && p->sibling()->color == BLACK
            && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK)
        {
            p->sibling()->color = RED;
            p->parent->color = BLACK;
        }
        else
        {
            if (p->sibling()->color == BLACK)
            {
                if (p == p->parent->leftTree && p->sibling()->leftTree->color == RED
                    && p->sibling()->rightTree->color == BLACK)
                {
                    p->sibling()->color = RED;
                    p->sibling()->leftTree->color = BLACK;
                    rotate_right(p->sibling()->leftTree);
                }
                else if (p == p->parent->rightTree && p->sibling()->leftTree->color == BLACK
                    && p->sibling()->rightTree->color == RED)
                {
                    p->sibling()->color = RED;
                    p->sibling()->rightTree->color = BLACK;
                    rotate_left(p->sibling()->rightTree);
                }
            }
            p->sibling()->color = p->parent->color;
            p->parent->color = BLACK;
            if (p == p->parent->leftTree)
            {
                p->sibling()->rightTree->color = BLACK;
                rotate_left(p->sibling());
            }
            else
            {
                p->sibling()->leftTree->color = BLACK;
                rotate_right(p->sibling());
            }
        }
    }

    void insert(Node *p, int data)
    {
        if (p->value >= data)
        {
            if (p->leftTree != NIL)
                insert(p->leftTree, data);
            else
            {
                Node *tmp = new Node();
                tmp->value = data;
                tmp->leftTree = tmp->rightTree = NIL;
                tmp->parent = p;
                p->leftTree = tmp;
                insert_case(tmp);
            }
        }
        else
        {
            if (p->rightTree != NIL)
                insert(p->rightTree, data);
            else
            {
                Node *tmp = new Node();
                tmp->value = data;
                tmp->leftTree = tmp->rightTree = NIL;
                tmp->parent = p;
                p->rightTree = tmp;
                insert_case(tmp);
            }
        }
    }

    void insert_case(Node *p)
    {
        if (p->parent == NULL)
        {
            root = p;
            p->color = BLACK;
            return;
        }
        if (p->parent->color == RED)
        {
            if (p->uncle()->color == RED)
            {
                p->parent->color = p->uncle()->color = BLACK;
                p->grandparent()->color = RED;
                insert_case(p->grandparent());
            }
            else
            {
                if (p->parent->rightTree == p && p->grandparent()->leftTree == p->parent)
                {
                    rotate_left(p);
                    rotate_right(p);
                    p->color = BLACK;
                    p->leftTree->color = p->rightTree->color = RED;
                }
                else if (p->parent->leftTree == p && p->grandparent()->rightTree == p->parent)
                {
                    rotate_right(p);
                    rotate_left(p);
                    p->color = BLACK;
                    p->leftTree->color = p->rightTree->color = RED;
                }
                else if (p->parent->leftTree == p && p->grandparent()->leftTree == p->parent)
                {
                    p->parent->color = BLACK;
                    p->grandparent()->color = RED;
                    rotate_right(p->parent);
                }
                else if (p->parent->rightTree == p && p->grandparent()->rightTree == p->parent)
                {
                    p->parent->color = BLACK;
                    p->grandparent()->color = RED;
                    rotate_left(p->parent);
                }
            }
        }
    }

    void DeleteTree(Node *p)
    {
        if (!p || p == NIL)
        {
            return;
        }
        DeleteTree(p->leftTree);
        DeleteTree(p->rightTree);
        delete p;
    }
public:

    bst()
    {
        NIL = new Node();
        NIL->color = BLACK;
        root = NULL;
    }

    ~bst()
    {
        if (root)
            DeleteTree(root);
        delete NIL;
    }

    void inorder()
    {
        if (root == NULL)
            return;
        inorder(root);
        cout << endl;
    }

    void insert(int x)
    {
        if (root == NULL)
        {
            root = new Node();
            root->color = BLACK;
            root->leftTree = root->rightTree = NIL;
            root->value = x;
        }
        else
        {
            insert(root, x);
        }
    }

    bool delete_value(int data)
    {
        return delete_child(root, data);
    }
private:
    Node *root, *NIL;
};

int main()
{
    cout << "---【红黑树】---" << endl;
    // 创建红黑树
    bst tree;

    // 插入元素
    tree.insert(2);
    tree.insert(9);
    tree.insert(-10);
    tree.insert(0);
    tree.insert(33);
    tree.insert(-19);

    // 顺序打印红黑树
    cout << "插入元素后的红黑树:" << endl;
    tree.inorder();

    // 删除元素
    tree.delete_value(2);

    // 顺序打印红黑树
    cout << "删除元素 2 后的红黑树:" << endl;
    tree.inorder();

    // 析构
    tree.~bst();

    getchar();
    return 0;
}

9 B树/B+树

在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库和文件系统。 ——维基百科

B 树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。

如:(M=3)

算法思路

从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

代码

BTNode* BTree_recursive_search(const BTree tree, KeyType key, int* pos)
{
    int i = 0;
    while (i < tree->keynum && key > tree->key[i])
    {
        ++i;
    }

    // 查找关键字
    if (i < tree->keynum && tree->key[i] == key)
    {
        *pos = i;
        return tree;
    }

    // tree 为叶子节点,找不到 key,查找失败返回
    if (tree->isLeaf)
    {
        return NULL;
    }

    // 节点内查找失败,但 tree->key[i - 1]< key < tree->key[i],
    // 下一个查找的结点应为 child[i]

    // 从磁盘读取第 i 个孩子的数据
    disk_read(&tree->child[i]);

    // 递归地继续查找于树 tree->child[i]
    return BTree_recursive_search(tree->child[i], key, pos);
}

B+树

B+树是B树的变体,也是一种多路搜索树:

其定义基本与B-树同,除了:

如:(M=3)

算法思路

B+的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在 非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

参考资料

  1. https://www.sohu.com/a/296278527_478315
  2. https://www.cnblogs.com/exzlc/p/12203744.html
  3. 部分配图来源于网络

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8