最近部门号召大伙多组织一些技术分享会,说是要活跃公司的技术氛围,但早就看穿一切的我知道,这 T M 就是为了刷KPI
。不过,话说回来这的确是件好事,与其开那些没味的扯皮会,多做技术交流还是很有助于个人成长的。
于是乎我主动报名参加了分享,咳咳咳~ ,真的不是为了那点KPI
,就是想和大伙一起学习学习!
这次我分享的是 springboot
+ rabbitmq
如何实现消息确认机制,以及在实际开发中的一点踩坑经验,其实整体的内容比较简单,有时候事情就是这么神奇,越是简单的东西就越容易出错。
可以看到使用了 RabbitMQ
以后,我们的业务链路明显变长了,虽然做到了系统间的解耦,但可能造成消息丢失的场景也增加了。例如:
所以说能不使用中间件就尽量不要用,如果为了用而用只会徒增烦恼。开启消息确认机制以后,尽管很大程度上保证了消息的准确送达,但由于频繁的确认交互,rabbitmq
整体效率变低,吞吐量下降严重,不是非常重要的消息真心不建议你用消息确认机制。
下边我们先来实现springboot
+ rabbitmq
消息确认机制,再对遇到的问题做具体分析。
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
配置中需要开启 发送端
和 消费端
的消息确认。
spring.rabbitmq.host=127.0.0.1
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
# 发送者开启 confirm 确认机制
spring.rabbitmq.publisher-confirms=true
# 发送者开启 return 确认机制
spring.rabbitmq.publisher-returns=true
####################################################
# 设置消费端手动 ack
spring.rabbitmq.listener.simple.acknowledge-mode=manual
# 是否支持重试
spring.rabbitmq.listener.simple.retry.enabled=true
定义交换机 confirmTestExchange
和队列 confirm_test_queue
,并将队列绑定在交换机上。
@Configuration
public class QueueConfig {
@Bean(name = "confirmTestQueue")
public Queue confirmTestQueue() {
return new Queue("confirm_test_queue", true, false, false);
}
@Bean(name = "confirmTestExchange")
public FanoutExchange confirmTestExchange() {
return new FanoutExchange("confirmTestExchange");
}
@Bean
public Binding confirmTestFanoutExchangeAndQueue(
@Qualifier("confirmTestExchange") FanoutExchange confirmTestExchange,
@Qualifier("confirmTestQueue") Queue confirmTestQueue) {
return BindingBuilder.bind(confirmTestQueue).to(confirmTestExchange);
}
}
rabbitmq
的消息确认分为两部分:发送消息确认 和 消息接收确认。
发送消息确认:用来确认生产者 producer
将消息发送到 broker
,broker
上的交换机 exchange
再投递给队列 queue
的过程中,消息是否成功投递。
消息从 producer
到 rabbitmq broker
有一个 confirmCallback
确认模式。
消息从 exchange
到 queue
投递失败有一个 returnCallback
退回模式。
我们可以利用这两个Callback
来确保消的100%送达。
消息只要被 rabbitmq broker
接收到就会触发 confirmCallback
回调 。
@Slf4j
@Component
public class ConfirmCallbackService implements RabbitTemplate.ConfirmCallback {
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
if (!ack) {
log.error("消息发送异常!");
} else {
log.info("发送者爸爸已经收到确认,correlationData={} ,ack={}, cause={}", correlationData.getId(), ack, cause);
}
}
}
实现接口 ConfirmCallback
,重写其confirm()
方法,方法内有三个参数correlationData
、ack
、cause
。
correlationData
:对象内部只有一个 id
属性,用来表示当前消息的唯一性。ack
:消息投递到broker
的状态,true
表示成功。cause
:表示投递失败的原因。但消息被 broker
接收到只能表示已经到达 MQ服务器,并不能保证消息一定会被投递到目标 queue
里。所以接下来需要用到 returnCallback
。
如果消息未能投递到目标 queue
里将触发回调 returnCallback
,一旦向 queue
投递消息未成功,这里一般会记录下当前消息的详细投递数据,方便后续做重发或者补偿等操作。
@Slf4j
@Component
public class ReturnCallbackService implements RabbitTemplate.ReturnCallback {
@Override
public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {
log.info("returnedMessage ===> replyCode={} ,replyText={} ,exchange={} ,routingKey={}", replyCode, replyText, exchange, routingKey);
}
}
实现接口ReturnCallback
,重写 returnedMessage()
方法,方法有五个参数message
(消息体)、replyCode
(响应code)、replyText
(响应内容)、exchange
(交换机)、routingKey
(队列)。
下边是具体的消息发送,在rabbitTemplate
中设置 Confirm
和 Return
回调,我们通过setDeliveryMode()
对消息做持久化处理,为了后续测试创建一个 CorrelationData
对象,添加一个id
为10000000000
。
@Autowired
private RabbitTemplate rabbitTemplate;
@Autowired
private ConfirmCallbackService confirmCallbackService;
@Autowired
private ReturnCallbackService returnCallbackService;
public void sendMessage(String exchange, String routingKey, Object msg) {
/**
* 确保消息发送失败后可以重新返回到队列中
* 注意:yml需要配置 publisher-returns: true
*/
rabbitTemplate.setMandatory(true);
/**
* 消费者确认收到消息后,手动ack回执回调处理
*/
rabbitTemplate.setConfirmCallback(confirmCallbackService);
/**
* 消息投递到队列失败回调处理
*/
rabbitTemplate.setReturnCallback(returnCallbackService);
/**
* 发送消息
*/
rabbitTemplate.convertAndSend(exchange, routingKey, msg,
message -> {
message.getMessageProperties().setDeliveryMode(MessageDeliveryMode.PERSISTENT);
return message;
},
new CorrelationData(UUID.randomUUID().toString()));
}
消息接收确认要比消息发送确认简单一点,因为只有一个消息回执(ack
)的过程。使用@RabbitHandler
注解标注的方法要增加 channel
(信道)、message
两个参数。
@Slf4j
@Component
@RabbitListener(queues = "confirm_test_queue")
public class ReceiverMessage1 {
@RabbitHandler
public void processHandler(String msg, Channel channel, Message message) throws IOException {
try {
log.info("小富收到消息:{}", msg);
//TODO 具体业务
channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
} catch (Exception e) {
if (message.getMessageProperties().getRedelivered()) {
log.error("消息已重复处理失败,拒绝再次接收...");
channel.basicReject(message.getMessageProperties().getDeliveryTag(), false); // 拒绝消息
} else {
log.error("消息即将再次返回队列处理...");
channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);
}
}
}
}
消费消息有三种回执方法,我们来分析一下每种方法的含义。
basicAck
:表示成功确认,使用此回执方法后,消息会被rabbitmq broker
删除。
void basicAck(long deliveryTag, boolean multiple)
deliveryTag
:表示消息投递序号,每次消费消息或者消息重新投递后,deliveryTag
都会增加。手动消息确认模式下,我们可以对指定deliveryTag
的消息进行ack
、nack
、reject
等操作。
multiple
:是否批量确认,值为 true
则会一次性 ack
所有小于当前消息 deliveryTag
的消息。
举个栗子: 假设我先发送三条消息deliveryTag
分别是5、6、7,可它们都没有被确认,当我发第四条消息此时deliveryTag
为8,multiple
设置为 true,会将5、6、7、8的消息全部进行确认。
basicNack
:表示失败确认,一般在消费消息业务异常时用到此方法,可以将消息重新投递入队列。
void basicNack(long deliveryTag, boolean multiple, boolean requeue)
deliveryTag
:表示消息投递序号。
multiple
:是否批量确认。
requeue
:值为 true
消息将重新入队列。
basicReject
:拒绝消息,与basicNack
区别在于不能进行批量操作,其他用法很相似。
void basicReject(long deliveryTag, boolean requeue)
deliveryTag
:表示消息投递序号。
requeue
:值为 true
消息将重新入队列。
发送消息测试一下消息确认机制是否生效,从执行结果上看发送者发消息后成功回调,消费端成功的消费了消息。
用抓包工具Wireshark
观察一下rabbitmq
amqp协议交互的变化,也多了 ack
的过程。
这是一个非常没技术含量的坑,但却是非常容易犯错的地方。
开启消息确认机制,消费消息别忘了channel.basicAck
,否则消息会一直存在,导致重复消费。
在我最开始接触消息确认机制的时候,消费端代码就像下边这样写的,思路很简单:处理完业务逻辑后确认消息, int a = 1 / 0
发生异常后将消息重新投入队列。
@RabbitHandler
public void processHandler(String msg, Channel channel, Message message) throws IOException {
try {
log.info("消费者 2 号收到:{}", msg);
int a = 1 / 0;
channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
} catch (Exception e) {
channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);
}
}
但是有个问题是,业务代码一旦出现 bug
99.9%的情况是不会自动修复,一条消息会被无限投递进队列,消费端无限执行,导致了死循环。
本地的CPU
被瞬间打满了,大家可以想象一下当时在生产环境导致服务死机,我是有多慌。
而且rabbitmq management
只有一条未被确认的消息。
经过测试分析发现,当消息重新投递到消息队列时,这条消息不会回到队列尾部,仍是在队列头部。
消费者会立刻消费这条消息,业务处理再抛出异常,消息再重新入队,如此反复进行。导致消息队列处理出现阻塞,导致正常消息也无法运行。
而我们当时的解决方案是,先将消息进行应答,此时消息队列会删除该条消息,同时我们再次发送该消息到消息队列,异常消息就放在了消息队列尾部,这样既保证消息不会丢失,又保证了正常业务的进行。
channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
// 重新发送消息到队尾
channel.basicPublish(message.getMessageProperties().getReceivedExchange(),
message.getMessageProperties().getReceivedRoutingKey(), MessageProperties.PERSISTENT_TEXT_PLAIN,
JSON.toJSONBytes(msg));
但这种方法并没有解决根本问题,错误消息还是会时不时报错,后面优化设置了消息重试次数,达到了重试上限以后,手动确认,队列删除此消息,并将消息持久化入MySQL
并推送报警,进行人工处理和定时任务做补偿。
如何保证 MQ 的消费是幂等性,这个需要根据具体业务而定,可以借助MySQL
、或者redis
将消息持久化,通过再消息中的唯一性属性校验。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8