SQLAlchemy是Python SQL工具箱和ORM框架,它为应用程序开发人员提供了全面而灵活的SQL功能。它提供了一整套企业级持久化方案,旨在高效,高性能地访问数据库,并符合简单的Pythonic哲学。项目代码量比较大,接近200个文件,7万行代码, 我们一起来挑战一下。由于篇幅原因,分成上下两篇,上篇包括如下内容:
源码使用的版本是 1.3.0
, 对应的commitID是 740bb50c2
,和参考链接中官方文档1.3版本一致。项目目录大概包括:
目录 | 描述 |
---|---|
connectors | 连接 |
dialects | 方言 |
engine | 引擎 |
event | 事件 |
ext | 扩展功能 |
orm | orm |
pool | 连接池 |
sql | sql处理 |
util | 工具类 |
SQLAlchemy的架构图如下:
architecture
整体分成3层,从上到下分别是ORM,core和DBAPI,其中core,又分成左右两个区域。我们先学习其中的引擎,连接池,dialects(仅sqlite)和DBAPI部分,也就是架构图的右半侧。其中DBAPI(sqlite相关)是在python-core-library中提供。
先从使用DBAPI操作sqlite的API开始:
import sqlite3
con = sqlite3.connect('example.db')
cur = con.cursor()
# Create table
cur.execute('''CREATE TABLE stocks
(date text, trans text, symbol text, qty real, price real)''')
# Insert a row of data
cur.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")
# Save (commit) the changes
con.commit()
# Do this instead
t = ('RHAT',)
cur.execute('SELECT * FROM stocks WHERE symbol=?', t)
print(cur.fetchone())
# We can also close the connection if we are done with it.
# Just be sure any chang
con.close()
操作sqlite数据库主要包括了下面几个步骤:
对比一下使用sqlalchemy进行sqlite操作:
from sqlalchemy import create_engine
eng = create_engine("sqlite:///:memory:", echo=True)
conn = eng.connect()
conn.execute("create table x (a integer, b integer)")
conn.execute("insert into x (a, b) values (1, 1)")
conn.execute("insert into x (a, b) values (2, 2)")
result = conn.execute("select x.a, x.b from x")
assert result.keys() == ["a", "b"]
result = conn.execute('''
select x.a, x.b from x where a=1
union
select x.a, x.b from x where a=2
''')
assert result.keys() == ["a", "b"]
可以看到使用sqlalchemy后操作变的简单,把cursor,commit,fetch和close等操作隐藏到engine内部,简化成3步:
跟随create_engine的API,可以看到这里使用策略模式去创建不同的engine实现:
# engine/__init__.py
from . import strategies
default_strategy = "plain" # 默认
def create_engine(*args, **kwargs):
strategy = kwargs.pop("strategy", default_strategy)
strategy = strategies.strategies[strategy]
return strategy.create(*args, **kwargs)
默认的engine策略:
# engine/strategies.py
strategies = {}
class EngineStrategy(object):
def __init__(self):
strategies[self.name] = self
class DefaultEngineStrategy(EngineStrategy):
def create(self, name_or_url, **kwargs):
...
class PlainEngineStrategy(DefaultEngineStrategy):
name = "plain"
engine_cls = base.Engine # 引擎类
PlainEngineStrategy()
重点就在策略的create方法了, 去掉数据准备和异常处理后核心代码如下:
def create(self, name_or_url, **kwargs):
...
# get dialect class
u = url.make_url(name_or_url)
entrypoint = u._get_entrypoint()
dialect_cls = entrypoint.get_dialect_cls(u)
# create dialect
dialect = dialect_cls(**dialect_args)
# pool
poolclass = dialect_cls.get_pool_class(u)
pool = poolclass(creator, **pool_args)
# engine
engineclass = self.engine_cls
engine = engineclass(pool, dialect, u, **engine_args)
...
return engine
create函数可以理解为engine的创建模版,主要是下面3个步骤:
Engine的构造函数和connect方法如下:
class Engine(Connectable, log.Identified):
_connection_cls = Connection
def __init__(
self,
pool,
dialect,
url,
logging_name=None,
echo=None,
proxy=None,
execution_options=None,
):
self.pool = pool
self.url = url
self.dialect = dialect
self.engine = self
...
def connect(self, **kwargs):
return self._connection_cls(self, **kwargs)
engine主要功能就是管理和持有connection,pool和dialect,对外提供API。
dialect是根据url自动识别,使用PluginLoader进行动态加载:
class PluginLoader(object):
def __init__(self, group, auto_fn=None):
self.group = group
self.impls = {}
self.auto_fn = auto_fn
def load(self, name):
# import一次
if name in self.impls:
return self.impls[name]()
if self.auto_fn:
loader = self.auto_fn(name)
if loader:
self.impls[name] = loader
return loader()
...
sqlite-dialect使用下面的 __import__
动态加载模块:
def _auto_fn(name):
if "." in name:
dialect, driver = name.split(".")
else:
dialect = name
driver = "base"
if dialect in _translates:
translated = _translates[dialect]
dialect = translated
try:
# 动态加载模块
module = __import__("sqlalchemy.dialects.%s" % (dialect,)).dialects
except ImportError:
return None
module = getattr(module, dialect)
if hasattr(module, driver):
module = getattr(module, driver)
return lambda: module.dialect
else:
return None
registry = util.PluginLoader("sqlalchemy.dialects", auto_fn=_auto_fn)
不同方言实现需要提供一个dialect对象,在sqlite中是这样的:
## sqlalchemy/dialects/sqlite/__init__.py
base.dialect = dialect = pysqlite.dialect
## sqlalchemy/dialects/sqlite/pysqlite.py
class SQLiteDialect_pysqlite(SQLiteDialect):
pass
dialect = SQLiteDialect_pysqlite
SQLiteDialect功能相简单,一是决定POOL_CLASS的类型: memory实现使用的是SingletonThreadPool;db文件使用NullPool,下面分析Pool时候会用到。
class SQLiteDialect_pysqlite(SQLiteDialect):
@classmethod
def get_pool_class(cls, url):
if url.database and url.database != ":memory:":
return pool.NullPool
else:
return pool.SingletonThreadPool
二是提供包装DBAPI得到的connect:
class DefaultDialect(interfaces.Dialect):
...
def connect(self, *cargs, **cparams):
return self.dbapi.connect(*cargs, **cparams)
class SQLiteDialect_pysqlite(SQLiteDialect):
...
@classmethod
def dbapi(cls):
try:
from pysqlite2 import dbapi2 as sqlite
except ImportError:
try:
from sqlite3 import dbapi2 as sqlite # try 2.5+ stdlib name.
except ImportError as e:
raise e
return sqlite
def connect(self, *cargs, **cparams):
passphrase = cparams.pop("passphrase", "")
pragmas = dict((key, cparams.pop(key, None)) for key in self.pragmas)
conn = super(SQLiteDialect_pysqlcipher, self).connect(
*cargs, **cparams
)
conn.execute('pragma key="%s"' % passphrase)
for prag, value in pragmas.items():
if value is not None:
conn.execute('pragma %s="%s"' % (prag, value))
return conn
connect在SQLiteDialect_pysqlite类和父类DefaultDialect之间反复横跳,核心功能就是下面2句代码:
from sqlite3 import dbapi2 as sqlite
sqlite.connect(*cargs, **cparams)
Connection构造函数如下:
class Connection(Connectable):
def __init__(
self,
engine,
connection=None,
close_with_result=False,
_branch_from=None,
_execution_options=None,
_dispatch=None,
_has_events=None,
):
self.engine = engine
self.dialect = engine.dialect
self.__connection = engine.raw_connection()
...
connection主要使用engine.raw_connection创建了一个DBAPI连接
class Engine(Connectable, log.Identified):
def raw_connection(self, _connection=None):
return self._wrap_pool_connect(
self.pool.unique_connection, _connection
)
def _wrap_pool_connect(self, fn, connection):
dialect = self.dialect
try:
return fn()
except dialect.dbapi.Error as e:
...
pool.unique_connection负责创建数据库连接,这里的实现过程比较复杂,个人觉得也挺绕的,涉及Pool,ConnectionFairy和ConnectionRecord三个类。我们一点一点的跟踪:
class SingletonThreadPool(Pool):
def __init__(self, creator, pool_size=5, **kw):
Pool.__init__(self, creator, **kw)
self._conn = threading.local()
self._all_conns = set()
self.size = pool_size
def unique_connection(self):
return _ConnectionFairy._checkout(self)
def _do_get(self):
c = _ConnectionRecord(self)
self._conn.current = weakref.ref(c)
if len(self._all_conns) >= self.size:
self._cleanup()
self._all_conns.add(c)
return c
SingletonThreadPool主要在_do_get的实现,创建一个ConnectionRecor对象,然后将其加入到自己管理的集合中后再返回,标准的池操作了。如何通过unique_connection方法去触发_do_get方法并得到实际的db-connect
class _ConnectionFairy(object):
def __init__(self, dbapi_connection, connection_record, echo):
self.connection = dbapi_connection
self._connection_record = connection_record
@classmethod
def _checkout(cls, pool, threadconns=None, fairy=None):
if not fairy:
fairy = _ConnectionRecord.checkout(pool)
fairy._pool = pool
fairy._counter = 0
return fairy
...
class _ConnectionRecord(object):
def __init__(self, pool, connect=True):
self.__pool = pool
@classmethod
def checkout(cls, pool):
rec = pool._do_get()
try:
dbapi_connection = rec.get_connection()
except Exception as err:
...
fairy = _ConnectionFairy(dbapi_connection, rec, echo)
rec.fairy_ref = weakref.ref(
fairy,
lambda ref: _finalize_fairy
and _finalize_fairy(None, rec, pool, ref, echo),
)
...
return fairy
def get_connection(self):
pool = self.__pool
connection = pool.creator(self)
self.connection = connection
return connection
...
class DefaultEngineStrategy(EngineStrategy):
def create(self, name_or_url, **kwargs):
def connect(connection_record=None):
# dbapai-connection
return dialect.connect(*cargs, **cparams)
creator = pop_kwarg("creator", connect)
pool = poolclass(creator, **pool_args)
...
整个过程大概是这样的:
除了执行过程在来回穿插外,还因为ConnectionFairy和ConnectionRecord是循环依赖的:
class _ConnectionRecord(object):
fairy_ref = None
...
class _ConnectionFairy(object):
def __init__(self, dbapi_connection, connection_record, echo):
self._connection_record = connection_record
知道connection如何创建后,继续看connection使用execute方法执行sql语句:
def execute(self, object_, *multiparams, **params):
if isinstance(object_, util.string_types[0]):
return self._execute_text(object_, multiparams, params)
...
def _execute_text(self, statement, multiparams, params):
"""Execute a string SQL statement."""
dialect = self.dialect
parameters = _distill_params(multiparams, params)
ret = self._execute_context(
dialect,
dialect.execution_ctx_cls._init_statement,
statement,
parameters,
statement,
parameters,
)
return ret
def _execute_context(
self, dialect, constructor, statement, parameters, *args
):
conn = self.__connection
...
context = constructor(dialect, self, conn, *args)
...
cursor, statement, parameters = (
context.cursor,
context.statement,
context.parameters,
)
...
self.dialect.do_execute(
cursor, statement, parameters, context
)
...
result = context._setup_crud_result_proxy()
return result
execute还有一些其它分支,可以适用ORM等场景,本篇只介绍纯文本的sql
函数层层穿透后,主要包括下面三段代码:
dialect涉及的上下文context创建和sql执行:
class DefaultDialect(interfaces.Dialect):
def do_execute(self, cursor, statement, parameters, context=None):
cursor.execute(statement, parameters)
DefaultDialect.execution_ctx_cls = DefaultExecutionContext
可以看到执行语句就是使用cursor对象,和前面直接操作sqlite一致。每条sql执行的上下文context是下面方式构建的:
class DefaultExecutionContext(interfaces.ExecutionContext):
@classmethod
def _init_statement(
cls, dialect, connection, dbapi_connection, statement, parameters
):
self = cls.__new__(cls)
self.root_connection = connection
self._dbapi_connection = dbapi_connection
self.dialect = connection.dialect
...
self.parameters = [{}]
...
self.statement = self.unicode_statement = statement
self.cursor = self.create_cursor()
return self
def create_cursor(self):
return self._dbapi_connection.cursor()
sql执行的结果,在context._setup_crud_result_proxy
中返回ResultProxy对象。ResultProxy是一个可以迭代的对象,可以使用fetchone获取单条记录:
class ResultProxy(object):
def __iter__(self):
while True:
row = self.fetchone()
if row is None:
return
else:
yield row
def __next__(self):
row = self.fetchone()
if row is None:
raise StopIteration()
else:
return row
def fetchone(self):
try:
row = self._fetchone_impl()
if row is not None:
return self.process_rows([row])[0]
def _fetchone_impl(self):
try:
return self.cursor.fetchone()
except AttributeError:
return self._non_result(None)
对获取的记录还可以使用process_rows进行数据封装,这个以后再介绍。
我们完整的追逐了使用sqlalchemy执行sql语句的过程,可以简单小结如下:
下面的类图介绍的更详细, 完整展示了engine/pool/connection/dialect的关系:
deprecated是一个废弃API装饰器, 主要给一些不再支持/推荐的API加上使用警告和更替的方法:
def deprecated(version, message=None, add_deprecation_to_docstring=True):
if add_deprecation_to_docstring:
header = ".. deprecated:: %s %s" % (version, (message or ""))
else:
header = None
if message is None:
message = "Call to deprecated function %(func)s"
def decorate(fn):
return _decorate_with_warning(
fn,
exc.SADeprecationWarning,
message % dict(func=fn.__name__),
header,
)
return decorate
比如Connectable.contextual_connect的API这样使用:
class Connectable(object):
@util.deprecated(
"1.3",
"The :meth:`.Engine.contextual_connect` and "
":meth:`.Connection.contextual_connect` methods are deprecated. This "
"method is an artifact of the threadlocal engine strategy which is "
"also to be deprecated. For explicit connections from an "
":class:`.Engine`, use the :meth:`.Engine.connect` method.",
)
def contextual_connect(self, *arg, **kw):
...
这对库/框架的开发者非常有用,API的变动可以这种方式通知使用者,进行平滑的升级替换。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8