上篇文章在阅读bottle源码时候,没有详细介绍bottle如何处理http请求,这需要先阅读python-http源码。本周我们一起看看python-http的源码,了解python构建http服务,响应http请求,把这一部分基础补充上。本文会分下面几个部分:
本次代码阅读使用的python 3.6.5 以上版本,有python环境即可(winddows和mac等系统在select部分会有差异),涉及的代码有:
文件 | 描述 |
---|---|
socket.py | socket的API |
select.py | select.py是stub文件,提供多路复用的异步IO的底层实现 |
selectors.py | 对select的高层实现,推荐使用 |
socketserver.py | tcpserver/udpserver等默认实现 |
http/server.py | 一个简单的http服务实现 |
http/client.py | 简单的http客户端 |
socket部分的基础知识,推荐直接查看参考链接1,介绍的非常详细。本文还是按照源码阅读的主题来进行解读,先是socket对象的创建:
class socket(_socket.socket):
"""A subclass of _socket.socket adding the makefile() method."""
__slots__ = ["__weakref__", "_io_refs", "_closed"]
def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None):
_socket.socket.__init__(self, family, type, proto, fileno)
self._io_refs = 0
self._closed = False
def __enter__(self):
return self
def __exit__(self, *args):
if not self._closed:
self.close()
从socket类可以看到:
socket的api比较多,可以从socket.pyi或者_socket.py看到,我们重点关注下图中TCP Socket Flow涉及到的api。
TCP Socket Flow
其它的api都由底层实现,除了accept。acecept函数是运行在服务端,接受一个新的进来新生成一个socket对象,用来代表这个新的连接。
def accept(self):
fd, addr = self._accept # 获取到本地的文件描述符和远程连接的地址
type = self.type & ~globals().get("SOCK_NONBLOCK", 0)
sock = socket(self.family, type, self.proto, fileno=fd) # 封装新的socket并返回
if getdefaulttimeout() is None and self.gettimeout():
sock.setblocking(True)
return sock, addr
socket代码中还提供了SocketIO类,示例如何包装socket进行读写操作:
class SocketIO(io.RawIOBase):
def __init__(self, sock, mode):
if mode not in ("r", "w", "rw", "rb", "wb", "rwb"): # socket也是文件,有读写等模式
raise ValueError("invalid mode: %r" % mode)
io.RawIOBase.__init__(self)
self._sock = sock
if "b" not in mode:
mode += "b" # socket是基于二进制
self._mode = mode
self._reading = "r" in mode # 读判定
self._writing = "w" in mode # 写判定
def readinto(self, b): # 从socket读取数据到指定的buffer
return self._sock.recv_into(b)
def write(self, b): # 写入数据到socket
return self._sock.send(b)
这是2组示例,分别演示了使用socket实现tcp和udp协议收发数据。
# tcp-server
import socket
HOST = '127.0.0.1'
PORT = 65432
with socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM) as s:
s.bind((HOST, PORT))
s.listen()
conn, addr = s.accept()
with conn:
print('Connected by', addr)
while True:
data = conn.recv(1024)
if not data:
break
print("recv data", data, len(data))
conn.sendall(data)
tcp-server的socket有bind,listen和accept三个过程,使用recv接收数据,使用sendall发送数据。tcp-client需要connect到服务端。
# tcp-client
import socket
HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 65432 # The port used by the server
with socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM) as sock:
sock.connect((HOST, PORT))
sock.sendall(b'Hello, world')
data = sock.recv(1024)
print('Received', repr(data))
tcp示例的输出日志:
# tcp-server
Connected by ('127.0.0.1', 64203)
recv data b'Hello, world' 12
# tcp-client
Received b'Hello, world'
udp协议下server和client都简单一些,没有listen和accept的过程:
# udp-sever
import socket
HOST = 'localhost'
PORT = 65432
with socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) as sock: # type不一样
# Bind the socket to the port
sock.bind((HOST, PORT))
while True:
data, address = sock.recvfrom(4096) # 直接接收数据
print("recv data", data, address)
if data:
sock.sendto(data, address) # sendto 发送到制定地址
# udp-client
import socket
HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 65432 # Port to listen on (non-privileged ports are > 1023)
# Create a UDP socket
with socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) as sock:
# Send data
sock.sendto(b'Hello, world', (HOST, PORT))
# Receive response
data, server = sock.recvfrom(4096)
print("recv data", data, server)
udp示例的日志:
# udp-server
recv data b'Hello, world' ('127.0.0.1', 55429)
# udp-client
recv data b'Hello, world' ('127.0.0.1', 65432)
前面示例中,服务端只能够处理一个连接的读写,不满足同时服务多个连接的需求。同时多个客户端连接,要在客户端连接之间切换,这就需要select。下面内容来自官方的中文文档:
select.select(rlist, wlist, xlist[, timeout])
这是一个明白直观的 Unix select() 系统调用接口。 前三个参数是由‘可等待对象’组成的序列:可以是代表文件描述符的整数,或是带有名为 fileno() 的返回这样的整数的无形参方法的对象:
rlist:等待,直到可以开始读取
wlist:等待,直到可以开始写入
xlist:等待“异常情况”(请参阅当前系统的手册,以获取哪些情况称为异常情况)
允许空的可迭代对象,但是否接受三个空的可迭代对象则取决于具体平台。 (已知在 Unix 上可行但在 Windows 上不可行。) 可选的 timeout 参数以一个浮点数表示超时秒数。 当省略 timeout 参数时该函数将阻塞直到至少有一个文件描述符准备就绪。 超时值为零表示执行轮询且永不阻塞。
返回值是三个列表,包含已就绪对象,返回的三个列表是前三个参数的子集。当超时时间已到且没有文件描述符就绪时,返回三个空列表。
可迭代对象中可接受的对象类型有 Python 文件对象 (例如 sys.stdin 以及 open() 或 os.popen() 所返回的对象),由 socket.socket() 返回的套接字对象等。 你也可以自定义一个 wrapper 类,只要它具有适当的 fileno() 方法(该方法要确实返回一个文件描述符,而不能只是一个随机整数)。
我们可以简单理解为select是个事件中心,管理多个连接,接受系统网络调用,派发不同的读写事件通知应用程序。select具体的应用还是看selector中的高层次API。
selector定义的读和写事件:
EVENT_READ = (1 << 0)
EVENT_WRITE = (1 << 1)
使用可命名元祖定义SelectorKey:
def _fileobj_to_fd(fileobj):
if isinstance(fileobj, int):
fd = fileobj
else:
try:
fd = int(fileobj.fileno()) # 获取文件描述符
except (AttributeError, TypeError, ValueError):
raise ValueError("Invalid file object: "
"{!r}".format(fileobj)) from None
if fd < 0:
raise ValueError("Invalid file descriptor: {}".format(fd))
return fd
SelectorKey = namedtuple('SelectorKey', ['fileobj', 'fd', 'events', 'data'])
BaseSelector
是元类,要求所有子类必须实现register,unregister和select方法:
class BaseSelector(metaclass=ABCMeta):
@abstractmethod
def register(self, fileobj, events, data=None):
raise NotImplementedError
@abstractmethod
def unregister(self, fileobj):
raise NotImplementedError
@abstractmethod
def select(self, timeout=None):
raise NotImplementedError
...
register和unregister的实现看起来也比较简单,就是使用字典管理对应的SelectorKey对象。
class _BaseSelectorImpl(BaseSelector):
def __init__(self):
# this maps file descriptors to keys
self._fd_to_key = {}
# read-only mapping returned by get_map()
self._map = _SelectorMapping(self)
def register(self, fileobj, events, data=None):
key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data)
self._fd_to_key[key.fd] = key
return key
def unregister(self, fileobj):
key = self._fd_to_key.pop(self._fileobj_lookup(fileobj))
return key
不同的操作系统有不同的select实现 :
class SelectSelector(_BaseSelectorImpl):
"""Select-based selector."""
if hasattr(select, 'poll'):
class PollSelector(_BaseSelectorImpl):
"""Poll-based selector."""
if hasattr(select, 'epoll'):
class EpollSelector(_BaseSelectorImpl):
"""Epoll-based selector."""
if hasattr(select, 'devpoll'):
class DevpollSelector(_BaseSelectorImpl):
"""Solaris /dev/poll selector."""
if hasattr(select, 'kqueue'):
class KqueueSelector(_BaseSelectorImpl):
"""Kqueue-based selector."""
# Choose the best implementation, roughly:
# epoll|kqueue|devpoll > poll > select.
if 'KqueueSelector' in globals():
DefaultSelector = KqueueSelector
elif 'EpollSelector' in globals():
DefaultSelector = EpollSelector
elif 'DevpollSelector' in globals():
DefaultSelector = DevpollSelector
elif 'PollSelector' in globals():
DefaultSelector = PollSelector
else:
DefaultSelector = SelectSelector
注释中给出了效率高低排序 epoll|kqueue|devpoll > poll > select 。我们学习一下最简单的SelectSelector,额外使用了2个集合管理所持有的fileobj:
class SelectSelector(_BaseSelectorImpl):
"""Select-based selector."""
def __init__(self):
super().__init__()
self._readers = set()
self._writers = set()
def register(self, fileobj, events, data=None):
key = super().register(fileobj, events, data)
if events & EVENT_READ:
self._readers.add(key.fd)
if events & EVENT_WRITE:
self._writers.add(key.fd)
return key
def unregister(self, fileobj):
key = super().unregister(fileobj)
self._readers.discard(key.fd)
self._writers.discard(key.fd)
return key
重点是select函数对_select的封装:
_select = select.select
def select(self, timeout=None):
timeout = None if timeout is None else max(timeout, 0)
ready = []
try:
r, w, _ = self._select(self._readers, self._writers, [], timeout)
except InterruptedError:
return ready
r = set(r)
w = set(w)
for fd in r | w:
events = 0
if fd in r:
events |= EVENT_READ
if fd in w:
events |= EVENT_WRITE
key = self._fd_to_key[fd]
if key:
ready.append((key, events & key.events))
return ready # 就绪的对象
至于更高效的epoll,pool的实现,只是内部实现有区别,可以以后再理解,一般情况下应用使用DefaultSelector的API,由系统自动选择最高效的方式。
使用selector实现的可以支持多个客户端链接的server:
# multi-server
import socket
import selectors
HOST = '127.0.0.1'
PORT = 65432
sel = selectors.DefaultSelector()
def accept(sock, mask): # 接受新连接
conn, addr = sock.accept() # Should be ready
print('accepted', conn, 'from', addr)
conn.setblocking(False)
sel.register(conn, selectors.EVENT_READ, read) # 继续加入selector
def read(conn, mask): # 读取数据
data = conn.recv(1000) # Should be ready
if data:
print('echoing', repr(data), 'to', conn)
conn.send(data) # Hope it won't block
else:
print('closing', conn)
sel.unregister(conn)
conn.close()
serverd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
serverd.bind((HOST, PORT))
serverd.listen(100)
serverd.setblocking(False) # 非阻塞
sel.register(serverd, selectors.EVENT_READ, accept) # 只注册read事件
while True: # 无限循环持续监听
events = sel.select()
for key, mask in events:
callback = key.data
callback(key.fileobj, mask)
客户端和之前的tcp-client类似,只是为了方便手动操作多开,增加了休眠时间:
# multi-client
import socket
import time
HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 65432 # The port used by the server
with socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM) as sock:
sock.connect((HOST, PORT))
for x in range(10):
sock.sendall(b'Hello, world')
data = sock.recv(1024)
print('Received', repr(data))
time.sleep(1)
开启服务端后,可以开多个客户端,观察服务端的日志:
accepted <socket.socket fd=5, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63288)> from ('127.0.0.1', 63288)
echoing b'Hello, world' to <socket.socket fd=5, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63288)>
echoing b'Hello, world' to <socket.socket fd=5, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63288)>
accepted <socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63295)> from ('127.0.0.1', 63295)
echoing b'Hello, world' to <socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63295)>
echoing b'Hello, world' to <socket.socket fd=5, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63288)>
...
echoing b'Hello, world' to <socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63295)>
closing <socket.socket fd=5, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63288)>
echoing b'Hello, world' to <socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63295)>
closing <socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 65432), raddr=('127.0.0.1', 63295)>
日志清晰的展示2个客户端接入,收发数据和关闭离开的过程。
socketserver注释非常的详尽,是理解socketserver代码的最好帮助。比如下面这段,直观的介绍了socketserver的结构,我们重点关注TCPServer的实现。
+------------+
| BaseServer |
+------------+
|
v
+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+
|
v
+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+
BaseServer定义了一个基础的socket服务模型, 接收服务参数和客户端类后初始化对象,使用serve_forever持续的监听连接,约定对请求的处理流程:
class BaseServer:
def __init__(self, server_address, RequestHandlerClass):
self.server_address = server_address
self.RequestHandlerClass = RequestHandlerClass
...
def serve_forever(self, poll_interval=0.5):
with selectors.SelectSelector() as selector:
selector.register(self, selectors.EVENT_READ)
while not self.__shutdown_request:
ready = selector.select(poll_interval)
if ready:
self._handle_request_noblock()
def _handle_request_noblock(self):
try:
request, client_address = self.get_request() # 子类实现
except OSError:
return
self.RequestHandlerClass(request, client_address, self) # 分层由客户端请求类实现具体需求
self.close_request(request) # 子类实现
TCPServer就是按TCP协议实现bind,listen和accept:
class TCPServer(BaseServer):
address_family = socket.AF_INET
socket_type = socket.SOCK_STREAM
request_queue_size = 5
def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
BaseServer.__init__(self, server_address, RequestHandlerClass)
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise
def server_bind(self):
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname()
def server_activate(self):
self.socket.listen(self.request_queue_size)
def get_request(self):
return self.socket.accept()
ThreadingMixIn也很重要,展示了使用多线程方式提供服务:
class ThreadingMixIn:
"""Mix-in class to handle each request in a new thread."""
def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address) # 回到父类的标准实现
except Exception:
self.handle_error(request, client_address)
finally:
self.shutdown_request(request)
def process_request(self, request, client_address):
"""Start a new thread to process the request."""
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address)) # 使用新线程处理请求
t.daemon = self.daemon_threads
t.start()
请求逻辑由RequestHandler处理,基础类是BaseRequestHandler,定义了请求处理的主要流程 setup -> handler -> finish :
class BaseRequestHandler:
def __init__(self, request, client_address, server):
self.request = request
self.client_address = client_address
self.server = server
self.setup() # 子类实现
try:
self.handle() # 子类实现
finally:
self.finish() # 子类实现
tcp方式的处理StreamRequestHandler, 主要就是对connection(socket)进行了包装:
class StreamRequestHandler(BaseRequestHandler):
rbufsize = -1
wbufsize = 0
def setup(self):
self.connection = self.request
self.rfile = self.connection.makefile('rb', self.rbufsize) # 包装读
if self.wbufsize == 0:
self.wfile = _SocketWriter(self.connection) # 包装写
...
def finish(self):
if not self.wfile.closed:
self.wfile.flush()
self.wfile.close()
self.rfile.close()
class _SocketWriter(BufferedIOBase):
def __init__(self, sock):
self._sock = sock
def write(self, b): # 写入数据
self._sock.sendall(b)
with memoryview(b) as view:
return view.nbytes
最重要的handler却留白了,等待应用程序的实现。
经过socket, selector和tcpserver三关,总算进入了我们的主题 http-server
, 可以使用下面方式启动一个简单的http服务:
python3 -m http.server
Serving HTTP on :: port 8000 (http://[::]:8000/) ...
我把启动过程梳理成下面代码:
HandlerClass = SimpleHTTPRequestHandler # 定义RequestHandler类
HandlerClass.protocol_version = "HTTP/1.0" # http协议版本
with ThreadingHTTPServer(addr, HandlerClass) as httpd: # 创建http服务
host, port = httpd.socket.getsockname()[:2]
url_host = f'[{host}]' if ':' in host else host
print(
f"Serving HTTP on {host} port {port} "
f"(http://{url_host}:{port}/) ..."
)
httpd.serve_forever() # 启动服务
得益于之前良好的封装ThreadingHTTPServer的实现非常简单,不用再介绍:
class HTTPServer(socketserver.TCPServer):
def server_bind(self):
"""Override server_bind to store the server name."""
socketserver.TCPServer.server_bind(self)
host, port = self.server_address[:2]
self.server_name = socket.getfqdn(host)
self.server_port = port
class ThreadingHTTPServer(socketserver.ThreadingMixIn, HTTPServer):
daemon_threads = True # 守护进程方式
从HTTPServer可以知道http服务的实现主要在SimpleHTTPRequestHandler中。首先看其父类BaseHTTPRequestHandler:
class BaseHTTPRequestHandler(socketserver.StreamRequestHandler): # 继承自StreamRequestHandler,这不奇怪http服务是tcp服务的子集,对应的请求实现也应该是基于stream的。
def handle(self):
"""Handle multiple requests if necessary."""
self.close_connection = True
self.handle_one_request() # 处理一个请求
while not self.close_connection: # 用于keep-alive等场景
self.handle_one_request()
BaseHTTPRequestHandler重点在实现StreamRequestHandler留白的handler方法(从名称上看就体现了http服务的特点,每个请求都是一次性的)。
def handle_one_request(self):
self.raw_requestline = self.rfile.readline(65537) # 处理http协议头
self.parse_request() # 处理http头
mname = 'do_' + self.command
method = getattr(self, mname)
method() # 处理http协议方法
self.wfile.flush() # 响应请求
在继续阅读代码之前,可以先简单了解一下http协议,使用curl访问一下我们的http服务:
curl -v http://127.0.0.1:8000
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to 127.0.0.1 (127.0.0.1) port 8000 (#0)
> GET / HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/7.64.1
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Server: SimpleHTTP/0.6 Python/3.8.5
< Date: Wed, 27 Jan 2021 11:03:08 GMT
< Content-type: text/html; charset=utf-8
< Content-Length: 1570
<
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Directory listing for /</title>
</head>
<body>
<h1>Directory listing for /</h1>
<hr>
<ul>
...
</ul>
<hr>
</body>
</html>
* Closing connection 0
日志中>
开头的部分是请求,<
开头的部分是响应,关于http协议的详解建议查看参考连接2。http请求的图示:
HTTP_Request
结合上图,我们可以知道我们的请求首行是 GET / HTTP/1.1
, 下面还有一些header信息。回到代码parse_request的实现
def parse_request(self):
self.raw_requestline = self.rfile.readline(65537)
# 协议校验
requestline = str(self.raw_requestline, 'iso-8859-1')
requestline = requestline.rstrip('\r\n')
self.requestline = requestline
words = requestline.split() # 分割
if len(words) == 0 or len(words) >= 3: # 长度校验
return False
if len(words) >= 3: # Enough to determine protocol version
version = words[-1]
if not version.startswith('HTTP/'):
raise ValueError
base_version_number = version.split('/', 1)[1]
version_number = base_version_number.split(".")
if len(version_number) != 2:
raise ValueError
...
# 分离方法和路径
command, path = words[:2]
self.command, self.path = command, path
# 解析http头
self.headers = http.client.parse_headers(self.rfile, _class=self.MessageClass)
根据代码可以反推http协议的首行要求:使用空格分割的三元组,分别对应http方法,路径和http协议版本,其中http协议版本又需要使用HTTP关键字前缀和协议版本组成。继续解析剩下的http请求头:
# http/client.py
def parse_headers(fp, _class=HTTPMessage):
headers = []
while True:
line = fp.readline(_MAXLINE + 1) # 持续读取行数据
if len(line) > _MAXLINE:
raise LineTooLong("header line")
headers.append(line)
if len(headers) > _MAXHEADERS:
raise HTTPException("got more than %d headers" % _MAXHEADERS)
if line in (b'\r\n', b'\n', b''): # 遇到空行完成读取
break
hstring = b''.join(headers).decode('iso-8859-1')
return email.parser.Parser(_class=_class).parsestr(hstring) # 解析封装头
http方法的实现逻辑在子类SimpleHTTPRequestHandler中:
def do_GET(self):
"""Serve a GET request."""
f = self.send_head()
if f:
try:
self.copyfile(f, self.wfile) # copy结果到socket的输出
finally:
f.close()
def send_head(self):
...
path = self.translate_path(self.path)
f = None
if os.path.isdir(path):
...
return self.list_directory(path)
...
展示目录的输出:
def list_directory(self, path):
list = os.listdir(path)
displaypath = urllib.parse.unquote(self.path,
errors='surrogatepass')
enc = sys.getfilesystemencoding()
title = 'Directory listing for %s' % displaypath
r.append('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" '
'"http://www.w3.org/TR/html4/strict.dtd">')
r.append('<html>\n<head>')
r.append('<meta http-equiv="Content-Type" '
'content="text/html; charset=%s">' % enc)
r.append('<title>%s</title>\n</head>' % title)
r.append('<body>\n<h1>%s</h1>' % title)
r.append('<hr>\n<ul>')
for name in list:
fullname = os.path.join(path, name)
displayname = linkname = name
# Append / for directories or @ for symbolic links
if os.path.isdir(fullname):
displayname = name + "/"
linkname = name + "/"
if os.path.islink(fullname):
displayname = name + "@"
# Note: a link to a directory displays with @ and links with /
r.append('<li><a href="%s">%s</a></li>'
% (urllib.parse.quote(linkname,
errors='surrogatepass'),
html.escape(displayname, quote=False)))
r.append('</ul>\n<hr>\n</body>\n</html>\n')
encoded = '\n'.join(r).encode(enc, 'surrogateescape')
f = io.BytesIO()
f.write(encoded)
f.seek(0)
self.send_response(HTTPStatus.OK)
self.send_header("Content-type", "text/html; charset=%s" % enc)
self.send_header("Content-Length", str(len(encoded)))
self.end_headers()
return f
可以看到list_directory进行了文件目录的操作,转换成html的文本后输出。同时设置http头及响应的处理:
def send_response(self, code, message=None):
self.send_response_only(code, message)
self.send_header('Server', self.version_string())
self.send_header('Date', self.date_time_string())
def send_response_only(self, code, message=None):
"""Send the response header only."""
message = self.responses[code][0]
self._headers_buffer.append(("%s %d %s\r\n" %
(self.protocol_version, code, message)).encode(
'latin-1', 'strict')) # 三段式回应 HTTP/1.0 200 OK
def send_header(self, keyword, value):
"""Send a MIME header to the headers buffer."""
if self.request_version != 'HTTP/0.9':
if not hasattr(self, '_headers_buffer'):
self._headers_buffer = []
self._headers_buffer.append(
("%s: %s\r\n" % (keyword, value)).encode('latin-1', 'strict'))
def end_headers(self):
"""Send the blank line ending the MIME headers."""
if self.request_version != 'HTTP/0.9':
self._headers_buffer.append(b"\r\n") # 隔开header和html
self.flush_headers()
def flush_headers(self):
if hasattr(self, '_headers_buffer'):
self.wfile.write(b"".join(self._headers_buffer)) # 写入head信息
self._headers_buffer = []
http状态的生成如下:
responses = {
v: (v.phrase, v.description)
for v in HTTPStatus.__members__.values()
} # 列表推导式
class HTTPStatus(IntEnum):
def __new__(cls, value, phrase, description=''):
obj = int.__new__(cls, value)
obj._value_ = value
obj.phrase = phrase
obj.description = description
return obj
OK = 200, 'OK', 'Request fulfilled, document follows'
http-server的主要流程已经梳理完成,还有很多实现的细节可以留到具体问题时候再进行研究。
使用Mixin模式,可以很好的组织实现类,下面22组合形成了6个实现类:
if hasattr(os, "fork"):
class ForkingUDPServer(ForkingMixIn, UDPServer): pass
class ForkingTCPServer(ForkingMixIn, TCPServer): pass
class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
if hasattr(socket, 'AF_UNIX'):
class UnixStreamServer(TCPServer):
address_family = socket.AF_UNIX
class UnixDatagramServer(UDPServer):
address_family = socket.AF_UNIX
class ThreadingUnixStreamServer(ThreadingMixIn, UnixStreamServer): pass
class ThreadingUnixDatagramServer(ThreadingMixIn, UnixDatagramServer): pass
使用元类来强制子类的创建过程:
class BaseSelector(metaclass=ABCMeta): # 元类
@abstractmethod
def register(self, fileobj, events, data=None):
raise NotImplementedError
@abstractmethod
def unregister(self, fileobj):
raise NotImplementedError
@abstractmethod
def select(self, timeout=None):
raise NotImplementedError
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8