JavaScript高阶函数的好处

402次阅读  |  发布于3年以前

一个函数可以接收另一个函数作为参数。总之一个函数的参数可以接收其他函数, 这种函数被称为高阶函数。

常见的高阶函数有:Map、Reduce、Filter、 Sort。高阶函数是至少满足以下条件之一的函数:

1:函数可以作为参数传递

2:函数可以作为返回值输出

JavaScript 语言中的函数显然满足高阶函数的条件。让我们来探索高阶函数的好处和使用场景。

高阶函数实现AOP

AOP(面向切面编程)的主要作用就是把一些和核心业务逻辑模块无关的功能抽取出来,然后再通过“动态织入”的方式掺到业务模块种。

这些功能一般包括日志统计,安全控制,异常处理等。AOP是Java Spring架构的核心。下面我们就来探索一下再JavaScript种如何实现AOP

在JavaScript种实现AOP,都是指把一个函数“动态织入”到另外一个函数中,具体实现的技术有很多,我们使用Function.prototype来做到这一点。代码如下:

/**
* 织入执行前函数
* @param {*} fn 
*/
Function.prototype.aopBefore = function(fn){
  console.log(this)
  // 第一步:保存原函数的引用
  const _this = this
  // 第四步:返回包括原函数和新函数的“代理”函数
  return function() {
    // 第二步:执行新函数,修正this
    fn.apply(this, arguments)
    // 第三步 执行原函数
    return _this.apply(this, arguments)
  }
}
/**
* 织入执行后函数
* @param {*} fn 
*/
Function.prototype.aopAfter = function (fn) {
  const _this = this
  return function () {
    let current = _this.apply(this,arguments)// 先保存原函数
    fn.apply(this, arguments) // 先执行新函数
    return current
  }
}
/**
* 使用函数
*/
let aopFunc = function() {
  console.log('aop')
}
// 注册切面
aopFunc = aopFunc.aopBefore(() => {
  console.log('aop before')
}).aopAfter(() => {
  console.log('aop after')
})
// 真正调用
aopFunc()

currying(柯里化)

关于curring我们首先要聊的是什么是函数柯里化。

curring又称部分求值。一个curring的函数首先会接受一些参数,接受了这些参数之后,该函数并不会立即求值,二十继续返回另外一个函数,刚才传入的参数在函数形成的闭包中被保存起来。待到函数中被真正的需要求值的时候,之前传入的所有参数被一次性用于求值。

生硬的看概念不太好理解,我们来看接下来的例子 我们需要一个函数来计算一年12个月的消费,在每个月月末的时候我们都要计算消费了多少钱。正常代码如下:

// 未柯里化的函数计算开销
let totalCost = 0
const cost = function(amount, mounth = '') {
 console.log(`第${mounth}月的花销是${amount}`)
 totalCost += amount
 console.log(`当前总共消费:${totalCost}`)
}
cost(1000, 1) // 第1个月的花销
cost(2000, 2) // 第2个月的花销
// ...
cost(3000, 12) // 第12个月的花销

总结一下不难发现,如果我们要计算一年的总消费,没必要计算12次。只需要在年底执行一次计算就行,接下来我们对这个函数进行部分柯里化的函数帮助我们理解。

// 部分柯里化完的函数
const curringPartCost = (function() {
 // 参数列表
 let args = []
 return function (){
   /**
    * 区分计算求值的情况
    * 有参数的情况下进行暂存
    * 无参数的情况下进行计算
    */
   if (arguments.length === 0) {
     let totalCost = 0
     args.forEach(item => {
       totalCost += item[0]
     })
     console.log(`共消费:${totalCost}`)
     return totalCost
   } else {
     // argumens并不是数组,是一个类数组对象
     let currentArgs = Array.from(arguments)
     args.push(currentArgs)
     console.log(`暂存${arguments[1] ? arguments[1] : '' }月,金额${arguments[0]}`)
   }
 }
})()
curringPartCost(1000,1)
curringPartCost(100,2)
curringPartCost()

接下来我们编写一个通用的curring, 以及一个即将被curring的函数。代码如下:

// 通用curring函数
const curring = function(fn) {
 let args = []
 return function () {
   if (arguments.length === 0) {
     console.log('curring完毕进行计算总值')
     return fn.apply(this, args)
   } else {
     let currentArgs = Array.from(arguments)[0]
     console.log(`暂存${arguments[1] ? arguments[1] : '' }月,金额${arguments[0]}`)
     args.push(currentArgs)
     // 返回正被执行的 Function 对象,也就是所指定的 Function 对象的正文,这有利于匿名函数的递归或者保证函数的封装性
     return arguments.callee
   }
 }
}
// 求值函数
let costCurring = (function() {
 let totalCost = 0
 return function () {
   for (let i = 0; i < arguments.length; i++) {
     totalCost += arguments[i]
   }
   console.log(`共消费:${totalCost}`)
   return totalCost
 }
})()
// 执行curring化
costCurring = curring(costCurring)
costCurring(2000, 1)
costCurring(2000, 2)
costCurring(9000, 12)
costCurring()

函数节流 JavaScript中的大多数函数都是用户主动触发的,一般情况下是没有性能问题,但是在一些特殊的情况下不是由用户直接控制。容易大量的调用引起性能问题。毕竟DOM操作的代价是非常昂贵的。下面将列举一些这样的场景:

下面通过高阶函数的方式我们来实现函数节流

/**
* 节流函数
* @param {*} fn 
* @param {*} interval 
*/
const throttle = function (fn, interval = 500) {
 let timer = null, // 计时器 
     isFirst = true // 是否是第一次调用
 return function () {
   let args = arguments, _me = this
   // 首次调用直接放行
   if (isFirst) {
     fn.apply(_me, args)
     return isFirst = false
   }
   // 存在计时器就拦截
   if (timer) {
     return false
   }
   // 设置timer
   timer = setTimeout(function (){
    console.log(timer)
    window.clearTimeout(timer)
    timer = null
    fn.apply(_me, args)
   }, interval)
 }
}
// 使用节流
window.onresize = throttle(function() {
 console.log('throttle')
},600)

分时函数

节流函数为我们提供了一种限制函数被频繁调用的解决方案。下面我们将遇到另外一个问题,某些函数是用户主动调用的,但是由于一些客观的原因,这些操作会严重的影响页面性能,此时我们需要采用另外的方式去解决。

如果我们需要在短时间内才页面中插入大量的DOM节点,那显然会让浏览器吃不消。可能会引起浏览器的假死,所以我们需要进行分时函数,分批插入。

/**
* 分时函数
* @param {*创建节点需要的数据} list 
* @param {*创建节点逻辑函数} fn 
* @param {*每一批节点的数量} count 
*/
const timeChunk = function(list, fn, count = 1){
 let insertList = [], // 需要临时插入的数据
     timer = null // 计时器
 const start = function(){
   // 对执行函数逐个进行调用
   for (let i = 0; i < Math.min(count, list.length); i++) {
     insertList = list.shift()
     fn(insertList)
   }
 }
 return function(){
   timer = setInterval(() => {
     if (list.length === 0) {
       return window.clearInterval(timer)
     }
     start()
   },200)
 }
}
// 分时函数测试
const arr = []
for (let i = 0; i < 94; i++) {
 arr.push(i)
}
const renderList = timeChunk(arr, function(data){
 let div =document.createElement('div')
 div.innerhtml = data + 1
 document.body.appendChild(div)
}, 20)
renderList()

惰性加载函数

在Web开发中,因为一些浏览器中的差异,一些嗅探工作总是不可避免的。

因为浏览器的差异性,我们要常常做各种各样的兼容,举一个非常简单常用的例子:在各个浏览器中都能够通用的事件绑定函数。

常见的写法是这样的:

// 常用的事件兼容
const addEvent = function(el, type, handler) {
 if (window.addEventListener) {
   return el.addEventListener(type, handler, false)
 }
 // for IE
 if (window.attachEvent) {
   return el.attachEvent(`on${type}`, handler)
 }
}

这个函数存在一个缺点,它每次执行的时候都会去执行if条件分支。虽然开销不大,但是这明显是多余的,下面我们优化一下, 提前一下嗅探的过程:

const addEventOptimization = (function() {
 if (window.addEventListener) {
   return (el, type, handler) => {
     el.addEventListener(type, handler, false)
   }
 }
 // for IE
 if (window.attachEvent) {
   return (el, type, handler) => {
     el.attachEvent(`on${type}`, handler)
   }
 }
})()

这样我们就可以在代码加载之前进行一次嗅探,然后返回一个函数。但是如果我们把它放在公共库中不去使用,这就有点多余了。下面我们使用惰性函数去解决这个问题:

// 惰性加载函数
let addEventLazy = function(el, type, handler) {
 if (window.addEventListener) {
   // 一旦进入分支,便在函数内部修改函数的实现
   addEventLazy = function(el, type, handler) {
     el.addEventListener(type, handler, false)
   }
 } else if (window.attachEvent) {
   addEventLazy = function(el, type, handler) {
     el.attachEvent(`on${type}`, handler)
   }
 }
 addEventLazy(el, type, handler)
}
addEventLazy(document.getElementById('eventLazy'), 'click', function() {
 console.log('lazy ')
})

一旦进入分支,便在函数内部修改函数的实现,重写之后函数就是我们期望的函数,在下一次进入函数的时候就不再存在条件分支语句。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8