【总结】1135- 图解虚拟 DOM 之 DIff 算法

302次阅读  |  发布于3年以前

1 . 目录

面试官:"你了解虚拟DOM(Virtual DOM)Diff算法吗,请描述一下它们";

我:"额,...鹅,那个",完了,突然智商不在线,没组织好语言没答好或者压根就答不出来;

所以这次我总结一下相关的知识点,让你可以有一个清晰的认知之余也会让你在今后遇到这种情况可以「坦然自若,应付自如,游刃有余」:


2 . 相关知识点:

3 . 虚拟DOM(Virtual DOM)

3.1. 什么是虚拟DOM

一句话总结虚拟DOM就是一个用来描述真实DOM的「javaScript对象」,这样说可能不够形象,那我们来举个:分别用代码来描述真实DOM以及虚拟DOM

真实DOM:

<ul class="list">
    <li>a</li>
    <li>b</li>
    <li>c</li>
</ul>

对应的虚拟DOM:


let vnode = h('ul.list', [
  h('li','a'),
  h('li','b'),
  h('li','c'),
])

console.log(vnode)

3.1.1 控制台打印出来的「Vnode」:

3.1.2 h函数生成的虚拟DOM这个JS对象(Vnode)的源码:

export interface VNodeData {
    props?: Props
    attrs?: Attrs
    class?: Classes
    style?: VNodeStyle
    dataset?: Dataset
    on?: On
    hero?: Hero
    attachData?: AttachData
    hook?: Hooks
    key?: Key
    ns?: string // for SVGs
    fn?: () => VNode // for thunks
    args?: any[] // for thunks
    [key: string]: any // for any other 3rd party module
}

export type Key = string | number

const interface VNode = {
    sel: string | undefined, // 选择器
    data: VNodeData | undefined, // VNodeData上面定义的VNodeData
    children: Array<VNode | string> | undefined, //子节点,与text互斥
    text: string | undefined, // 标签中间的文本内容
    elm: Node | undefined, // 转换而成的真实DOM
    key: Key | undefined // 字符串或者数字
}
3.1.2 补充:

上面的h函数大家可能有点熟悉的感觉但是一时间也没想起来,没关系我来帮大伙回忆; 开发中常见的现实场景,render函数渲染:


// 案例1 vue项目中的main.js的创建vue实例
new Vue({
  router,
  store,
  render: h => h(App)
}).$mount("#app");

//案例2 列表中使用render渲染
columns: [
    {
        title: "操作",
        key: "action",
        width: 150,
        render: (h, params) => {
            return h('section', [
                h('Button', {
                    props: {
                        size: 'small'
                    },
                    style: {
                        marginRight: '5px',
                        marginBottom: '5px',
                    },
                    on: {
                        click: () => {
                            this.toEdit(params.row.uuid);
                        }
                    }
                }, '编辑')
            ]);
        }
    }
]

3.2. 为什么要使用虚拟DOM

「灵魂发问」:使用了虚拟DOM就一定会比直接渲染真实DOM快吗?答案当然是否定的,且听我说:

「举例」:当一个节点变更时DOMA->DOMB

「举例」:当DOM树里面的某个子节点的内容变更时:

总结:「复杂视图情况下提升渲染性能」,因为虚拟DOM+Diff算法可以精准找到DOM树变更的地方,减少DOM的操作(重排重绘)


3.3. 虚拟dom库

4 . Diff算法

在看完上述的文章之后相信大家已经对Diff算法有一个初步的概念,没错,Diff算法其实就是找出两者之间的差异;

diff 算法首先要明确一个概念就是 Diff 的对象是虚拟DOM(virtual dom),更新真实 DOM 是 Diff 算法的结果。

下面我将会手撕snabbdom源码核心部分为大家打开Diff的心,给点耐心,别关网页,我知道你们都是这样:

src=http___img.wxcha.com_file_201905_17_f5a4d33d48.jpg&refer=http___img.wxcha.jpeg- - - - - -

5 . snabbdom的核心

5.1. init函数

init函数时设置模块,然后创建patch()函数,我们先通过场景案例来有一个直观的体现:


import {init} from 'snabbdom/build/package/init.js'
import {h} from 'snabbdom/build/package/h.js'

// 1.导入模块
import {styleModule} from "snabbdom/build/package/modules/style";
import {eventListenersModule} from "snabbdom/build/package/modules/eventListeners";

// 2.注册模块
const patch = init([
  styleModule,
  eventListenersModule
])

// 3.使用h()函数的第二个参数传入模块中使用的数据(对象)
let vnode = h('section', [
  h('h1', {style: {backgroundColor: 'red'}}, 'Hello world'),
  h('p', {on: {click: eventHandler}}, 'Hello P')
])

function eventHandler() {
  alert('疼,别摸我')
}

const app = document.querySelector('#app')

patch(app,vnode)

当init使用了导入的模块就能够在h函数中用这些模块提供的api去创建虚拟DOM(Vnode)对象;在上文中就使用了样式模块以及事件模块让创建的这个虚拟DOM具备样式属性以及事件属性,最终通过patch函数对比两个虚拟dom(会先把app转换成虚拟dom),更新视图;

我们再简单看看init的源码部分:

// src/package/init.ts
/* 第一参数就是各个模块
   第二参数就是DOMAPI,可以把DOM转换成别的平台的API,
也就是说支持跨平台使用,当不传的时候默认是htmlDOMApi,见下文
   init是一个高阶函数,一个函数返回另外一个函数,可以缓存modules,与domApi两个参数,
那么以后直接只传oldValue跟newValue(vnode)就可以了*/
export function init (modules: Array<Partial<Module>>, domApi?: DOMAPI) {

...

return function patch (oldVnode: VNode | Element, vnode: VNode): VNode {}
}

5.2. h函数

些地方也会用createElement来命名,它们是一样的东西,都是创建虚拟DOM的,在上述文章中相信大伙已经对h函数有一个初步的了解并且已经联想了使用场景,就不作场景案例介绍了,直接上源码部分:

// h函数
export function h (sel: string): VNode
export function h (sel: string, data: VNodeData | null): VNode
export function h (sel: string, children: VNodeChildren): VNode
export function h (sel: string, data: VNodeData | null, children: VNodeChildren): VNode
export function h (sel: any, b?: any, c?: any): VNode {
  var data: VNodeData = {}
  var children: any
  var text: any
  var i: number
    ...
  return vnode(sel, data, children, text, undefined) //最终返回一个vnode函数
};
// vnode函数
export function vnode (sel: string | undefined,
  data: any | undefined,
  children: Array<VNode | string> | undefined,
  text: string | undefined,
  elm: Element | Text | undefined): VNode {
  const key = data === undefined ? undefined : data.key
  return { sel, data, children, text, elm, key } //最终生成Vnode对象
}

「总结」:h函数先生成一个vnode函数,然后vnode函数再生成一个Vnode对象(虚拟DOM对象)

5.2.1 补充:

在h函数源码部分涉及一个函数重载的概念,简单说明一下:

重载这个概念个参数相关,和返回值无关


function add(a:number,b:number){

console.log(a+b)

}

function add(a:number,b:number,c:number){

console.log(a+b+c)

}

add(1,2)

add(1,2,3)

function add(a:number,b:number){

console.log(a+b)

}

function add(a:number,b:string){

console.log(a+b)

}

add(1,2)

add(1,'2')

5.3. patch函数(核心)

src=http___shp.qpic.cn_qqvideo_ori_0_e3012t7v643_496_280_0&refer=http___shp.qpic.jpeg

要是看完前面的铺垫,看到这里你可能走神了,醒醒啊,这是核心啊,上高地了兄弟;

源码:

return function patch(oldVnode: VNode | Element, vnode: VNode): VNode {    
    let i: number, elm: Node, parent: Node
    const insertedVnodeQueue: VNodeQueue = []
    // cbs.pre就是所有模块的pre钩子函数集合
    for (i = 0; i < cbs.pre.length; ++i) cbs.pre[i]()
    // isVnode函数时判断oldVnode是否是一个虚拟DOM对象
    if (!isVnode(oldVnode)) {
        // 若不是即把Element转换成一个虚拟DOM对象
        oldVnode = emptyNodeAt(oldVnode)
    }
    // sameVnode函数用于判断两个虚拟DOM是否是相同的,源码见补充1;
    if (sameVnode(oldVnode, vnode)) {
        // 相同则运行patchVnode对比两个节点,关于patchVnode后面会重点说明(核心)
        patchVnode(oldVnode, vnode, insertedVnodeQueue)
    } else {
        elm = oldVnode.elm! // !是ts的一种写法代码oldVnode.elm肯定有值
        // parentNode就是获取父元素
        parent = api.parentNode(elm) as Node

        // createElm是用于创建一个dom元素插入到vnode中(新的虚拟DOM)
        createElm(vnode, insertedVnodeQueue)

        if (parent !== null) {
            // 把dom元素插入到父元素中,并且把旧的dom删除
            api.insertBefore(parent, vnode.elm!, api.nextSibling(elm))// 把新创建的元素放在旧的dom后面
            removeVnodes(parent, [oldVnode], 0, 0)
        }
    }

    for (i = 0; i < insertedVnodeQueue.length; ++i) {
        insertedVnodeQueue[i].data!.hook!.insert!(insertedVnodeQueue[i])
    }
    for (i = 0; i < cbs.post.length; ++i) cbs.post[i]()
    return vnode
}

5.3.1 补充1: sameVnode函数

function sameVnode(vnode1: VNode, vnode2: VNode): boolean { 通过key和sel选择器判断是否是相同节点
    return vnode1.key === vnode2.key && vnode1.sel === vnode2.sel
}

5.4. patchVnode

源码:

function patchVnode(oldVnode: VNode, vnode: VNode, insertedVnodeQueue: VNodeQueue) {
    const hook = vnode.data?.hook
    hook?.prepatch?.(oldVnode, vnode)
    const elm = vnode.elm = oldVnode.elm!
    const oldCh = oldVnode.children as VNode[]
    const ch = vnode.children as VNode[]
    if (oldVnode === vnode) return
    if (vnode.data !== undefined) {
        for (let i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
        vnode.data.hook?.update?.(oldVnode, vnode)
    }
    if (isUndef(vnode.text)) { // 新节点的text属性是undefined
        if (isDef(oldCh) && isDef(ch)) { // 当新旧节点都存在子节点
            if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue) //并且他们的子节点不相同执行updateChildren函数,后续会重点说明(核心)
        } else if (isDef(ch)) { // 只有新节点有子节点
            // 当旧节点有text属性就会把''赋予给真实dom的text属性
            if (isDef(oldVnode.text)) api.setTextContent(elm, '') 
            // 并且把新节点的所有子节点插入到真实dom中
            addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
        } else if (isDef(oldCh)) { // 清除真实dom的所有子节点
            removeVnodes(elm, oldCh, 0, oldCh.length - 1)
        } else if (isDef(oldVnode.text)) { // 把''赋予给真实dom的text属性
            api.setTextContent(elm, '')
        }
    } else if (oldVnode.text !== vnode.text) { //若旧节点的text与新节点的text不相同
        if (isDef(oldCh)) { // 若旧节点有子节点,就把所有的子节点删除
            removeVnodes(elm, oldCh, 0, oldCh.length - 1)
        }
        api.setTextContent(elm, vnode.text!) // 把新节点的text赋予给真实dom
    }
    hook?.postpatch?.(oldVnode, vnode) // 更新视图
}

看得可能有点蒙蔽,下面再上一副思维导图:


5.5. 题外话:diff算法简介

「传统diff算法」

「snabbdom的diff算法优化」

src=http___img.wxcha.com_file_202004_03_1ed2e19e4f.jpg&refer=http___img.wxcha.jpeg

下面我们就会介绍updateChildren函数怎么去对比子节点的异同,也是Diff算法里面的一个核心以及难点;


5.6. updateChildren(核中核:判断子节点的差异)

1 . oldStartVnode/newStartVnode(旧开始节点/新开始节点)相同

2 . oldEndVnode/newEndVnode(旧结束节点/新结束节点)相同

3 . oldStartVnode/newEndVnode(旧开始节点/新结束节点)相同

4 . oldEndVnode/newStartVnode(旧结束节点/新开始节点)相同

5 . 特殊情况当1,2,3,4的情况都不符合的时候就会执行,在oldVnodes里面寻找跟newStartVnode一样的节点然后位移到oldStartVnode,若没有找到在就oldStartVnode创建一个

6 . 执行过程是一个循环,在每次循环里,只要执行了上述的情况的五种之一就会结束一次循环

7 . 循环结束的收尾工作:直到oldStartIdx>oldEndIdx || newStartIdx>newEndIdx(代表旧节点或者新节点已经遍历完) 为了更加直观的了解,我们再来看看同级别节点比较五种情况的实现细节:

5.6.1 新开始节点和旧开始节点(情况1)

5.6.2 新结束节点和旧结束节点(情况2)

5.6.3 旧开始节点/新结束节点(情况3)

5.6.4 旧结束节点/新开始节点(情况4)

5.6.5 新开始节点/旧节点数组中寻找节点(情况5)

379426071b8130075b11ba142f9468e2.jpeg


下面我们再介绍一下结束循环的收尾工作(oldStartIdx>oldEndIdx || newStartIdx>newEndIdx):

最后附上源码:

function updateChildren(parentElm, oldCh, newCh, insertedVnodeQueue) {
    let oldStartIdx = 0;                // 旧节点开始节点索引
    let newStartIdx = 0;                // 新节点开始节点索引
    let oldEndIdx = oldCh.length - 1;   // 旧节点结束节点索引
    let oldStartVnode = oldCh[0];       // 旧节点开始节点
    let oldEndVnode = oldCh[oldEndIdx]; // 旧节点结束节点
    let newEndIdx = newCh.length - 1;   // 新节点结束节点索引
    let newStartVnode = newCh[0];       // 新节点开始节点
    let newEndVnode = newCh[newEndIdx]; // 新节点结束节点
    let oldKeyToIdx;                    // 节点移动相关
    let idxInOld;                       // 节点移动相关
    let elmToMove;                      // 节点移动相关
    let before;


    // 同级别节点比较
    while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
        if (oldStartVnode == null) {
            oldStartVnode = oldCh[++oldStartIdx]; // Vnode might have been moved left
        }
        else if (oldEndVnode == null) {
            oldEndVnode = oldCh[--oldEndIdx];
        }
        else if (newStartVnode == null) {
            newStartVnode = newCh[++newStartIdx];
        }
        else if (newEndVnode == null) {
            newEndVnode = newCh[--newEndIdx];
        }
        else if (sameVnode(oldStartVnode, newStartVnode)) { // 判断情况1
            patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue);
            oldStartVnode = oldCh[++oldStartIdx];
            newStartVnode = newCh[++newStartIdx];
        }
        else if (sameVnode(oldEndVnode, newEndVnode)) {   // 情况2
            patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue);
            oldEndVnode = oldCh[--oldEndIdx];
            newEndVnode = newCh[--newEndIdx];
        }
        else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right情况3
            patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue);
            api.insertBefore(parentElm, oldStartVnode.elm, api.nextSibling(oldEndVnode.elm));
            oldStartVnode = oldCh[++oldStartIdx];
            newEndVnode = newCh[--newEndIdx];
        }
        else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left情况4
            patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue);
            api.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm);
            oldEndVnode = oldCh[--oldEndIdx];
            newStartVnode = newCh[++newStartIdx];
        }
        else {                                             // 情况5
            if (oldKeyToIdx === undefined) {
                oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx);
            }
            idxInOld = oldKeyToIdx[newStartVnode.key];
            if (isUndef(idxInOld)) { // New element        // 创建新的节点在旧节点的新节点前
                api.insertBefore(parentElm, createElm(newStartVnode, insertedVnodeQueue), oldStartVnode.elm);
            }
            else {
                elmToMove = oldCh[idxInOld];
                if (elmToMove.sel !== newStartVnode.sel) { // 创建新的节点在旧节点的新节点前
                    api.insertBefore(parentElm, createElm(newStartVnode, insertedVnodeQueue), oldStartVnode.elm);
                }
                else {
                                                           // 在旧节点数组中找到相同的节点就对比差异更新视图,然后移动位置
                    patchVnode(elmToMove, newStartVnode, insertedVnodeQueue);
                    oldCh[idxInOld] = undefined;
                    api.insertBefore(parentElm, elmToMove.elm, oldStartVnode.elm);
                }
            }
            newStartVnode = newCh[++newStartIdx];
        }
    }
    // 循环结束的收尾工作
    if (oldStartIdx <= oldEndIdx || newStartIdx <= newEndIdx) {
        if (oldStartIdx > oldEndIdx) {
            // newCh[newEndIdx + 1].elm就是旧节点数组中的结束节点对应的dom元素
            // newEndIdx+1是因为在之前成功匹配了newEndIdx需要-1
            // newCh[newEndIdx + 1].elm,因为已经匹配过有相同的节点了,它就是等于旧节点数组中的结束节点对应的dom元素(oldCh[oldEndIdx + 1].elm)
            before = newCh[newEndIdx + 1] == null ? null : newCh[newEndIdx + 1].elm;
            // 把新节点数组中多出来的节点插入到before前
            addVnodes(parentElm, before, newCh, newStartIdx, newEndIdx, insertedVnodeQueue);
        }
        else {
            // 这里就是把没有匹配到相同节点的节点删除掉
            removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx);
        }
    }
}

5.6.6 key的作用

以下我们看看这些作用的实例:

5.6.6 Diff操作可以更加准确;(避免渲染错误):

实例:a,b,c三个dom元素中的b,c间插入一个z元素

没有设置key

当设置了key:

5.6.6 Diff操作可以更加准确;(避免渲染错误)

实例:a,b,c三个dom元素,修改了a元素的某个属性再去在a元素前新增一个z元素

没有设置key:

因为没有设置key,默认都是undefined,所以节点都是相同的,更新了text的内容但还是沿用了之前的dom,所以实际上a->z(a原本打勾的状态保留了,只改变了text),b->a,c->b,d->c,遍历完毕发现还要增加一个dom,在最后新增一个text为d的dom元素

设置了key:

当设置了key,a,b,c,d都有对应的key,a->a,b->b,c->c,d->d,内容相同无需更新,遍历结束,新增一个text为z的dom元素

5.6.6 不推荐使用索引作为key:

设置索引为key:

这明显效率不高,我们只希望找出不同的节点更新,而使用索引作为key会增加运算时间,我们可以把key设置为与节点text为一致就可以解决这个问题:

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8