[垃圾回收、三色标记原理]
垃圾回收就是对程序中不再使用的内存资源进行自动回收的操作。
引用计数:每个对象维护一个引用计数,当被引用对象被创建或被赋值给其他对象时引用计数自动加 +1;如果这个对象被销毁,则计数 -1 ,当计数为 0 时,回收该对象。
优点:对象可以很快被回收,不会出现内存耗尽或到达阀值才回收。
缺点:不能很好的处理循环引用
标记-清除:从根变量开始遍历所有引用的对象,引用的对象标记“被引用”,没有被标记的则进行回收。
优点:解决了引用计数的缺点。
缺点:需要 STW(stop the world),暂时停止程序运行。
分代收集:按照对象生命周期长短划分不同的代空间,生命周期长的放入老年代,短的放入新生代,不同代有不同的回收算法和回收频率。
优点:回收性能好
缺点:算法复杂
❝造成引用对象丢失的条件:
一个黑色的节点A新增了指向白色节点C的引用,并且白色节点C没有除了A之外的其他灰色节点的引用,或者存在但是在GC过程中被删除了。以上两个条件需要同时满足:满足条件1时说明节点A已扫描完毕,A指向C的引用无法再被扫描到;满足条件2时说明白色节点C无其他灰色节点的引用了,即扫描结束后会被忽略 。
写屏障破坏两个条件其一即可
- 破坏条件1:Dijistra写屏障
满足强三色不变性:黑色节点不允许引用白色节点 当黑色节点新增了白色节点的引用时,将对应的白色节点改为灰色
- 破坏条件2:Yuasa写屏障
满足弱三色不变性:黑色节点允许引用白色节点,但是该白色节点有其他灰色节点间接的引用(确保不会被遗漏) 当白色节点被删除了一个引用时,悲观地认为它一定会被一个黑色节点新增引用,所以将它置为灰色
❞
[协程的深入剖析]
CSP 模型是“以通信的方式来共享内存”,不同于传统的多线程通过共享内存来通信。用于描述两个独立的并发实体通过共享的通讯 channel (管道)进行通信的并发模型。
M必须拥有P才可以执行G中的代码,P含有一个包含多个G的队列,P可以调度G交由M执行。
队列轮转:P 会周期性的将G调度到M中执行,执行一段时间后,保存上下文,将G放到队列尾部,然后从队列中再取出一个G进行调度。除此之外,P还会周期性的查看全局队列是否有G等待调度到M中执行。
系统调用:当G0即将进入系统调用时,M0将释放P,进而某个空闲的M1获取P,继续执行P队列中剩下的G。M1的来源有可能是M的缓存池,也可能是新建的。
当G0系统调用结束后,如果有空闲的P,则获取一个P,继续执行G0。如果没有,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
[chan实现原理]
type hchan struct {
qcount uint // 队列中的总元素个数
dataqsiz uint // 环形队列大小,即可存放元素的个数
buf unsafe.Pointer // 环形队列指针
elemsize uint16 //每个元素的大小
closed uint32 //标识关闭状态
elemtype *_type // 元素类型
sendx uint // 发送索引,元素写入时存放到队列中的位置
recvx uint // 接收索引,元素从队列的该位置读出
recvq waitq // 等待读消息的goroutine队列
sendq waitq // 等待写消息的goroutine队列
lock mutex //互斥锁,chan不允许并发读写
}
❝向 channel 写数据:
- 若等待接收队列 recvq 不为空,则缓冲区中无数据或无缓冲区,将直接从 recvq 取出 G ,并把数据写入,最后把该 G 唤醒,结束发送过程。
- 若缓冲区中有空余位置,则将数据写入缓冲区,结束发送过程。
- 若缓冲区中没有空余位置,则将发送数据写入 G,将当前 G 加入 sendq ,进入睡眠,等待被读 goroutine 唤醒。
❞
❝从 channel 读数据
- 若等待发送队列 sendq 不为空,且没有缓冲区,直接从 sendq 中取出 G ,把 G 中数据读出,最后把 G 唤醒,结束读取过程。
- 如果等待发送队列 sendq 不为空,说明缓冲区已满,从缓冲区中首部读出数据,把 G 中数据写入缓冲区尾部,把 G 唤醒,结束读取过程。
- 如果缓冲区中有数据,则从缓冲区取出数据,结束读取过程。
- 将当前 goroutine 加入 recvq ,进入睡眠,等待被写 goroutine 唤醒。
❞
❝关闭 channel
1.关闭 channel 时会将 recvq 中的 G 全部唤醒,本该写入 G 的数据位置为 nil。将 sendq 中的 G 全部唤醒,但是这些 G 会 panic。
panic 出现的场景还有:
- 关闭值为 nil 的 channel
- 关闭已经关闭的 channel
- 向已经关闭的 channel 中写数据
❞
// 无缓冲的channel由于没有缓冲发送和接收需要同步
ch := make(chan int)
//有缓冲channel不要求发送和接收操作同步
ch := make(chan int, 2)
channel 无缓冲时,发送阻塞直到数据被接收,接收阻塞直到读到数据;channel有缓冲时,当缓冲满时发送阻塞,当缓冲空时接收阻塞。
Context(上下文)是Golang应用开发常用的并发控制技术 ,它可以控制一组呈树状结构的goroutine,每个goroutine拥有相同的上下文。Context 是并发安全的,主要是用于控制多个协程之间的协作、取消操作。
Context 只定义了接口,凡是实现该接口的类都可称为是一种 context。
[并发控制神器之Context]
type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key interface{}) interface{}
}
[并发控制,同步原语 sync 包]
资源竞争,就是在程序中,同一块内存同时被多个 goroutine 访问。我们使用 go build、go run、go test 命令时,添加 -race 标识可以检查代码中是否存在资源竞争。
解决这个问题,我们可以给资源进行加锁,让其在同一时刻只能被一个协程来操作。
[面试官问我go逃逸场景有哪些,我???]
「逃逸分析」就是程序运行时内存的分配位置(栈或堆),是由编译器来确定的。堆适合不可预知大小的内存分配。但是为此付出的代价是分配速度较慢,而且会形成内存碎片。
逃逸场景:
Go 中 Goroutine 可以通过 Channel 进行安全读写共享变量。
[用new还是make?到底该如何选择?]
首先Go的JSON 标准库对 nil slice 和 空 slice 的处理是不一致。
[并发掌握,goroutine和channel声明与使用!]
通常小对象过多会导致GC三色法消耗过多的CPU。优化思路是,减少对象分配。
Channel 可以理解是一个先进先出的队列,通过管道进行通信,发送一个数据到Channel和从Channel接收一个数据都是原子性的。不要通过共享内存来通信,而是通过通信来共享内存,前者就是传统的加锁,后者就是Channel。设计Channel的主要目的就是在多任务间传递数据的,本身就是安全的。
使用步调(Pacing)算法,其核心思想是控制内存增长的比例,每次内存分配时检查当前内存分配量是否已达到阈值(环境变量GOGC):默认100%,即当内存扩大一倍时启用GC。
使用系统监控,当超过两分钟没有产生任何GC时,强制触发 GC。
Channel是异步进行的, channel存在3种状态:
操作 | 一个零值nil通道 | 一个非零值但已关闭的通道 | 一个非零值且尚未关闭的通道 |
---|---|---|---|
关闭 | 产生恐慌 | 产生恐慌 | 成功关闭 |
发送数据 | 永久阻塞 | 产生恐慌 | 阻塞或者成功发送 |
接收数据 | 永久阻塞 | 永不阻塞 | 阻塞或者成功接收 |
使用sync.WaitGroup。WaitGroup,就是用来等待一组操作完成的。WaitGroup内部实现了一个计数器,用来记录未完成的操作个数。Add()用来添加计数;Done()用来在操作结束时调用,使计数减一;Wait()用来等待所有的操作结束,即计数变为0,该函数会在计数不为0时等待,在计数为0时立即返回。
[slice 实现原理]
在使用 append 向 slice 追加元素时,若 slice 空间不足则会发生扩容,扩容会重新分配一块更大的内存,将原 slice 拷贝到新 slice ,然后返回新 slice。扩容后再将数据追加进去。
扩容操作只对容量,扩容后的 slice 长度不变,容量变化规则如下:
Go中map如果要实现顺序读取的话,可以先把map中的key,通过sort包排序。
[究竟在什么情况下才使用指针?]
[参数传递中,值、引用及指针之间的区别!]
方法的接收者:
但是接口的实现,值类型接收者和指针类型接收者不一样:
通常我们使用指针作为方法的接收者的理由:
Goroutine 需要维护执行用户代码的上下文信息,在运行过程中需要消耗一定的内存来保存这类信息,如果一个程序持续不断地产生新的 goroutine,且不结束已经创建的 goroutine 并复用这部分内存,就会造成内存泄漏的现象。
可以通过Go自带的工具pprof或者使用Gops去检测诊断当前在系统上运行的Go进程的占用的资源。
Go中两个Nil可能不相等。
接口(interface) 是对非接口值(例如指针,struct等)的封装,内部实现包含 2 个字段,类型 T 和 值 V。一个接口等于 nil,当且仅当 T 和 V 处于 unset 状态(T=nil,V is unset)。
两个接口值比较时,会先比较 T,再比较 V。接口值与非接口值比较时,会先将非接口值尝试转换为接口值,再比较。
func main() {
var p *int = nil
var i interface{} = p
fmt.Println(i == p) // true
fmt.Println(p == nil) // true
fmt.Println(i == nil) // false
}
CPU 访问内存时,并不是逐个字节访问,而是以字长(word size)为单位访问。比如 32 位的 CPU ,字长为 4 字节,那么 CPU 访问内存的单位也是 4 字节。
CPU 始终以字长访问内存,如果不进行内存对齐,很可能增加 CPU 访问内存的次数,例如:
变量 a、b 各占据 3 字节的空间,内存对齐后,a、b 占据 4 字节空间,CPU 读取 b 变量的值只需要进行一次内存访问。如果不进行内存对齐,CPU 读取 b 变量的值需要进行 2 次内存访问。第一次访问得到 b 变量的第 1 个字节,第二次访问得到 b 变量的后两个字节。
也可以看到,内存对齐对实现变量的原子性操作也是有好处的,每次内存访问是原子的,如果变量的大小不超过字长,那么内存对齐后,对该变量的访问就是原子的,这个特性在并发场景下至关重要。
简言之:合理的内存对齐可以提高内存读写的性能,并且便于实现变量操作的原子性。
reflect.TypeOf(a).Kind() == reflect.TypeOf(b).Kind()
reflect.DeepEqual(a, b interface{})
reflect.ValueOf(a).Elem().Set(reflect.ValueOf(b))
package main
import "fmt"
type student struct {
id int32
name string
}
func main() {
a := &student{id: 1, name: "微客鸟窝"}
fmt.Printf("a=%v \n", a) // a=&{1 微客鸟窝}
fmt.Printf("a=%+v \n", a) // a=&{id:1 name:微客鸟窝}
fmt.Printf("a=%#v \n", a) // a=&main.student{id:1, name:"微客鸟窝"}
}
Go语言的字符有以下两种:
package main
import "fmt"
func main() {
var str = "hello 你好" //思考下 len(str) 的长度是多少?
//golang中string底层是通过byte数组实现的,直接求len 实际是在按字节长度计算
//所以一个汉字占3个字节算了3个长度
fmt.Println("len(str):", len(str)) // len(str): 12
//通过rune类型处理unicode字符
fmt.Println("rune:", len([]rune(str))) //rune: 8
}
可以使用 unsafe.Sizeof 计算出一个数据类型实例需要占用的字节数:
package main
import (
"fmt"
"unsafe"
)
func main() {
fmt.Println(unsafe.Sizeof(struct{}{})) //0
}
空结构体 struct{} 实例不占据任何的内存空间。
因为空结构体不占据内存空间,因此被广泛作为各种场景下的占位符使用。
1 . 将 map 作为集合(Set)使用时,可以将值类型定义为空结构体,仅作为占位符使用即可。
type Set map[string]struct{}
func (s Set) Has(key string) bool {
_, ok := s[key]
return ok
}
func (s Set) Add(key string) {
s[key] = struct{}{}
}
func (s Set) Delete(key string) {
delete(s, key)
}
func main() {
s := make(Set)
s.Add("Tom")
s.Add("Sam")
fmt.Println(s.Has("Tom"))
fmt.Println(s.Has("Jack"))
}
2 . 不发送数据的信道(channel)
使用 channel 不需要发送任何的数据,只用来通知子协程(goroutine)执行任务,或只用来控制协程并发度。
func worker(ch chan struct{}) {
<-ch
fmt.Println("do something")
close(ch)
}
func main() {
ch := make(chan struct{})
go worker(ch)
ch <- struct{}{}
}
3 . 结构体只包含方法,不包含任何的字段
type Door struct{}
func (d Door) Open() {
fmt.Println("Open the door")
}
func (d Door) Close() {
fmt.Println("Close the door")
}
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8