LongAdder是jdk8引入的适用于统计场景的线程安全的计数器。
在此之前,实现一款线程安全的计数器要么加锁
,要么使用AtomicLong
,加锁性能必然很差,AtomicLong性能要好很多,但是在高并发、多线程下,也显得吃力。于是就有了LongAdder
,LongAdder有两个重要的方法:add
和sum
,add是线程安全的加,sum是返回结果,之所以叫sum是因为LongAdder通过分段
的思想维护了一组变量,多线程并发更新时被散列到不同的变量上执行,减少冲突,所以最后获取返回值是将这些变量求和。通过这点也能看出sum获取的结果是不准确的,所以它只适用于统计场景
,如果要获取精确的返回值,还是得用AtomicLong,性能和准确不可兼得。
通过JMH
测试LongAdder、AtomicLong以及加锁的计数器的性能,感受一下LongAdder的强大。(如无特殊说明,本文后续JMH测试均以此为标准:fork1进程,4线程,预热2次,正式测量2次,测试机器4核,完整代码已上传github,文末有地址)
private final AtomicLong atomicLong = new AtomicLong();
private final LongAdder longAdder = new LongAdder();
private long counter = 0;
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(LongAdderTest.class.getSimpleName())
.forks(1)
.threads(4)
.warmupIterations(2)
.measurementIterations(2)
.mode(Mode.Throughput)
.syncIterations(false)
.build();
new Runner(opt).run();
}
@Benchmark
public void testAtomic() {
atomicLong.incrementAndGet();
}
@Benchmark
public void testLongAdder() {
longAdder.increment();
}
@Benchmark
public synchronized void testLockAdder() {
counter++;
}
运行后
Benchmark Mode Cnt Score Error Units
LongAdderTest.testAtomic thrpt 2 73520672.658 ops/s
LongAdderTest.testLockAdder thrpt 2 23456856.867 ops/s
LongAdderTest.testLongAdder thrpt 2 300013067.345 ops/s
可以看到LongAdder和另外两种实现完全不在一个量级上,性能及其恐怖。既然知道LongAdder的大致原理,那我们能不能实现一个MyLongAdder,保证写入线程安全的同时,性能比肩甚至超越LongAdder呢?
性能优化中很多都是依靠LongAdder这种分段的方式,如ConcurrentHashMap就是采用分段锁,于是我们也实现一个V0版本的MyLongAdder
public class MyLongAdderV0 {
private final int coreSize;
private final AtomicLong[] counts;
public MyLongAdderV0(int coreSize) {
this.coreSize = coreSize;
this.counts = new AtomicLong[coreSize];
for (int i = 0; i < coreSize; i++) {
this.counts[i] = new AtomicLong();
}
}
public void increment() {
int index = (int) (Thread.currentThread().getId() % coreSize);
counts[index].incrementAndGet();
}
}
使用一个AtomicLong数组,线程执行时,按线程id散列开,coreSize这里期望是cpu核数,和LongAdder、AtomicLong对比一下看看(测试代码省略,后同)
Benchmark Mode Cnt Score Error Units
LongAdderTest.testAtomic thrpt 2 73391661.579 ops/s
LongAdderTest.testLongAdder thrpt 2 309539056.885 ops/s
LongAdderTest.testMyLongAdderV0 thrpt 2 83737867.380 ops/s
emmm,V0性能仅仅比AtomicLong好一点点,跟LongAdder还是不在一个量级上,难道是数组不够大?将coreSize作为参数,测试一下 4, 8, 16, 32的情况,我测试了好几次,每次结果都不一样但又差不多在一个量级(偶尔会上亿),无法总结结果与coreSize的关系,这里给出其中一组
Benchmark (coreSize) Mode Cnt Score Error Units
LongAdderTest.testMyLongAdderV0 4 thrpt 2 62328997.667 ops/s
LongAdderTest.testMyLongAdderV0 8 thrpt 2 124725716.902 ops/s
LongAdderTest.testMyLongAdderV0 16 thrpt 2 84718415.566 ops/s
LongAdderTest.testMyLongAdderV0 32 thrpt 2 85321816.442 ops/s
猜想是因为依赖了线程的id,分散的不够均匀导致,而且还有一个有意思的情况,有时候V0居然比AtomicLong的性能还低。
注意到V0里面有一个取模的操作,这个操作可能比较耗时,可能会导致V0的性能甚至不如单个AtomicLong,可以通过移位操作来代替,但代替的前提是coreSize必须为2的n次方,如2,4,8,16(我们假定后续coreSize只取2的n次方),V1版本的代码如下:
public class MyLongAdderV1 {
private final int coreSize;
private final AtomicLong[] counts;
public MyLongAdderV1(int coreSize) {
this.coreSize = coreSize;
this.counts = new AtomicLong[coreSize];
for (int i = 0; i < coreSize; i++) {
this.counts[i] = new AtomicLong();
}
}
public void increment() {
int index = (int) (Thread.currentThread().getId() & (coreSize - 1));
counts[index].incrementAndGet();
}
}
测试一下性能
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 312683635.190 ops/s
LongAdderTest.testMyLongAdderV0 thrpt 2 60641758.648 ops/s
LongAdderTest.testMyLongAdderV1 thrpt 2 100887869.829 ops/s
性能稍微好了一点,但是跟LongAdder比还是差了一大截
在cpu面前内存太慢了
,所以cpu有三级缓存 L3,L2,L1。L1最接近cpu,速度也最快,cpu查找的顺序是先L1,再L2,再L3,最后取不到会去内存取。通常来说每个缓存由很多缓存行组成,缓存行通常是64个字节,java的long是8字节,因此一个缓存行可以缓存8个long变量。如果多个核的线程在操作同一个缓存行中的不同变量数据,那么就会出现频繁的缓存失效,即使在代码层面看这两个线程操作的数据之间完全没有关系。这种不合理的资源竞争情况学名伪共享(False Sharing
),会严重影响机器的并发执行效率。
在V1中,AtomicLong中有一个value,每次incrementAndGet会改变这个value,同时AtomicLong是一个数组,数组的内存地址也是连续的,这样就会导致相邻的AtomicLong的value缓存失效,其他线程读取这个value就会变得很慢。优化的方法就是填充AtomicLong,让每个AtomicLong的value相互隔离,不要相互影响。
通常填充缓存行有如下几种方式:
@sun.misc.Contended
,jvm参数需要指定-XX:-RestrictContended
abstract class RingBufferPad {
protected long p1, p2, p3, p4, p5, p6, p7;
}
abstract class RingBufferFields<E> extends RingBufferPad {
protected long value;
}
public final class RingBuffer<E> extends RingBufferFields<E> {
protected long p1, p2, p3, p4, p5, p6, p7;
}
我们直接用java8的@sun.misc.Contended
来对V1进行优化
public class MyLongAdderV2 {
private static class AtomicLongWrap {
@Contended
private final AtomicLong value = new AtomicLong();
}
private final int coreSize;
private final AtomicLongWrap[] counts;
public MyLongAdderV2(int coreSize) {
this.coreSize = coreSize;
this.counts = new AtomicLongWrap[coreSize];
for (int i = 0; i < coreSize; i++) {
this.counts[i] = new AtomicLongWrap();
}
}
public void increment() {
int index = (int) (Thread.currentThread().getId() & (coreSize - 1));
counts[index].value.incrementAndGet();
}
}
执行后神奇的情况出现了
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 272733686.330 ops/s
LongAdderTest.testMyLongAdderV2 thrpt 2 307754425.667 ops/s
居然V2版本比LongAdder还快!但这是真的吗?为此,我多测试了几组,分别在线程数为8时
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 260909722.754 ops/s
LongAdderTest.testMyLongAdderV2 thrpt 2 215785206.276 ops/s
线程数为16时:
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 307269737.067 ops/s
LongAdderTest.testMyLongAdderV2 thrpt 2 185774540.302 ops/s
发现随着线程数的增加,V2的性能越来越低,但LongAdder纹丝不动,不得不佩服写jdk的大佬。
V0到V2版本均使用了线程id作为hash值来散列到不同的槽点,线程id生成后不会改变,这样就会导致每次执行的测试可能结果都不太一样,如果比较聚焦,性能必然会很差,当线程数增多后必然会造成更多的冲突,有没有更好的hash算法?
java的每个对象都有一个hashCode,我们使用线程对象的hashCode来散列试试,版本V3关键改动如下
public void increment() {
int index = Thread.currentThread().hashCode() & (coreSize - 1);
counts[index].incrementAndGet();
}
结果如下
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 277084413.669 ops/s
LongAdderTest.testMyLongAdderV3 thrpt 2 103351246.650 ops/s
性能似乎不尽如人意。
当然使用Random当然不行,用性能更好的ThreadLocalRandom,V4版本关键改动如下
public void increment() {
counts[ThreadLocalRandom.current().nextInt(coreSize)].value.incrementAndGet();
}
结果如下
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 292807355.101 ops/s
LongAdderTest.testMyLongAdderV4 thrpt 2 95200307.226 ops/s
性能也上不去,猜想是因为生成随机数比较耗时。
为了优化V4版本,参考了LongAdder,算是一个黑科技,生成一个随机数存在Thread对象中,可以看一下Thread类,刚好有这个变量
/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;
但是这个变量是不对外开放,只能通过反射
(性能太差)或者UNSAFE
来取,它在 ThreadLocalRandomSeed
中被初始化,发生冲突时重新生成并修改它(生成的方法可以参考ThreadLocalRandomSeed),也是通过UNSAFE可以搞定。既然要在冲突时重新hash,那必须能检测出冲突,AtomicLong就不能用incrementAndGet了,使用AtomicLong的compareAndSet方法,返回false时代表有冲突,冲突时重新hash,并用incrementAndGet兜底,保证一定能成功。如此一来,既可以均匀地散列开,也能保证随机数生成的效率。V5版本代码如下
public class MyLongAdderV5 {
private static sun.misc.Unsafe UNSAFE = null;
private static final long PROBE;
static {
try {
// 反射获取unsafe
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
UNSAFE = (Unsafe) f.get(null);
} catch (Exception e) {
}
try {
Class<?> tk = Thread.class;
PROBE = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomProbe"));
} catch (Exception e) {
throw new Error(e);
}
}
static final int getProbe() {
// 获取thread的threadLocalRandomProbe属性值
return UNSAFE.getInt(Thread.currentThread(), PROBE);
}
static final int advanceProbe(int probe) {
// 重新生成随机数并写入thread对象
probe ^= probe << 13; // xorshift
probe ^= probe >>> 17;
probe ^= probe << 5;
UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
return probe;
}
private static class AtomicLongWrap {
@Contended
private final AtomicLong value = new AtomicLong();
}
private final int coreSize;
private final AtomicLongWrap[] counts;
public MyLongAdderV5(int coreSize) {
this.coreSize = coreSize;
this.counts = new AtomicLongWrap[coreSize];
for (int i = 0; i < coreSize; i++) {
this.counts[i] = new AtomicLongWrap();
}
}
public void increment() {
int h = getProbe();
int index = getProbe() & (coreSize - 1);
long r;
if (!counts[index].value.compareAndSet(r = counts[index].value.get(), r + 1)) {
if (h == 0) {
// 初始化随机数
ThreadLocalRandom.current();
h = getProbe();
}
// 冲突后重新生成随机数
advanceProbe(h);
// 用getAndIncrement来兜底
counts[index].value.getAndIncrement();
}
}
}
结果如下
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 274131797.300 ops/s
LongAdderTest.testMyLongAdderV5 thrpt 2 298402832.456 ops/s
效果还可以,试试8线程:
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 324982482.774 ops/s
LongAdderTest.testMyLongAdderV5 thrpt 2 290476796.289 ops/s
16线程:
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 291180444.998 ops/s
LongAdderTest.testMyLongAdderV5 thrpt 2 282745610.470 ops/s
32线程:
Benchmark Mode Cnt Score Error Units
LongAdderTest.testLongAdder thrpt 2 294237473.396 ops/s
LongAdderTest.testMyLongAdderV5 thrpt 2 301187346.873 ops/s
果然这个方法很牛皮,无论在多少个线程下都能稳如。
实现一款超越LongAdder性能的多线程计数器非常难,折腾了两天也只是达到和LongAdder相当的性能,其中对性能影响最大的几个改动点是
其中前三条比较常规,第四条可以算得上是黑科技
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8