CountDownLatch是我目前使用比较多的类,CountDownLatch初始化时会给定一个计数,然后每次调用countDown() 计数减1,
当计数未到达0之前调用await() 方法会阻塞直到计数减到0;
使用场景:多用于划分任务由多个线程执行,例如:最近写个豆瓣爬虫,需要爬取每个电影的前五页短评,可以划分成五个线程来处理数据。通过latch.await()保证全部完成再返回。
public void latch() throws InterruptedException {
int count= 5;
CountDownLatch latch = new CountDownLatch(count);
for (int x=0;x<count;x++){
new Worker(x*20,latch).start();
}
latch.await();
System.out.println("全部执行完毕");
}
class Worker extends Thread{
Integer start;
CountDownLatch latch;
public Worker(Integer start,CountDownLatch latch){
this.start=start;
this.latch=latch;
} @Override
public void run() {
System.out.println(start+" 已执行");
latch.countDown();
}
}
输出如下:
20 已执行
0 已执行
40 已执行
60 已执行
80 已执行
全部执行完毕
它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)也就是阻塞在调用cyclicBarrier.await()的地方。
看上去CyclicBarrier 跟CountDownLatch 功能上类似,在官方doc上CountDownLatch的描述上就说明了,CountDownLatch 的计数无法被重置,
如果需要重置计数,请考虑使用CyclicBarrier。
CyclicBarrier初始时还可添加一个Runnable的参数, 此Runnable在CyclicBarrier的数目达到后,所有其它线程被唤醒前被最后一个进入 CyclicBarrier 的线程执行
使用场景:类似CyclicBarrier,但是 CyclicBarrier提供了几个countdownlatch 没有的方法以应付更复杂的场景,例如:
getNumberWaiting() 获取阻塞线程数量,
isBroken() 用来知道阻塞的线程是否被中断等方法。
reset() 将屏障重置为其初始状态。如果所有参与者目前都在屏障处等待,则它们将返回,同时抛出一个 BrokenBarrierException。
public void latch() throws InterruptedException {
int count = 5;
CyclicBarrier cb = new CyclicBarrier(count, new Runnable() {
@Override
public void run() {
System.out.println("全部执行完毕");
}
});
ExecutorService executorService = Executors.newFixedThreadPool(count);
while (true){
for (int x=0;x<count;x++){
executorService.execute(new Worker(x,cb));
}
}
}
class Worker extends Thread {
Integer start;
CyclicBarrier cyclicBarrier; public Worker(Integer start, CyclicBarrier cyclicBarrier) {
this.start = start;
this.cyclicBarrier = cyclicBarrier;
} @Override
public void run() {
System.out.println(start + " 已执行");
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}
}
输出如下:
0 已执行
3 已执行
4 已执行
2 已执行
1 已执行
全部执行完毕
0 已执行
1 已执行
2 已执行
3 已执行
4 已执行
全部执行完毕
Semaphore 信号量维护了一个许可集,每次使用时执行acquire()从Semaphore获取许可,如果没有则会阻塞,每次使用完执行release()释放许可。
使用场景:Semaphore对用于对资源的控制,比如数据连接有限,使用Semaphore限制访问数据库的线程数。
public void latch() throws InterruptedException, IOException {
int count = 5;
Semaphore semaphore = new Semaphore(1);
ExecutorService executorService = Executors.newFixedThreadPool(count);
for (int x=0;x<count;x++){
executorService.execute(new Worker(x,semaphore));
}
System.in.read();
}
class Worker extends Thread {
Integer start;
Semaphore semaphore; public Worker(Integer start, Semaphore semaphore) {
this.start = start;
this.semaphore = semaphore;
} @Override
public void run() throws IllegalArgumentException {
try {
System.out.println(start + " 准备执行");
TimeUnit.SECONDS.sleep(1);
semaphore.acquire();
System.out.println(start + " 已经执行");
semaphore.release();
System.out.println(start + " 已经释放");
} catch (InterruptedException e) {
e.printStackTrace();
} }
}
输出如下:
0 准备执行
2 准备执行
1 准备执行
3 准备执行
4 准备执行
2 已经执行
2 已经释放
4 已经执行
4 已经释放
1 已经执行
1 已经释放
0 已经执行
0 已经释放
3 已经执行
3 已经释放
Exchanger 用于两个线程间的数据交换,它提供一个同步点,在这个同步点两个线程可以交换彼此的数据。
使用场景:两个线程相互等待处理结果并进行数据传递。
public void latch() throws InterruptedException, IOException {
int count = 5;
Exchanger<String> exchanger = new Exchanger<>();
ExecutorService executorService = Executors.newFixedThreadPool(count);
for (int x=0;x<count;x++){
executorService.execute(new Worker(x,exchanger));
}
System.in.read();
}
class Worker extends Thread {
Integer start;
Exchanger<String> exchanger; public Worker(Integer start, Exchanger<String> exchanger) {
this.start = start;
this.exchanger = exchanger;
} @Override
public void run() throws IllegalArgumentException {
try {
System.out.println(Thread.currentThread().getName() + " 准备执行");
TimeUnit.SECONDS.sleep(start);
System.out.println(Thread.currentThread().getName() + " 等待交换");
String value = exchanger.exchange(Thread.currentThread().getName());
System.out.println(Thread.currentThread().getName() + " 交换得到数据为:"+value);
} catch (InterruptedException e) {
e.printStackTrace();
} }
}
输出如下:
pool-1-thread-1 准备执行
pool-1-thread-1 等待交换
pool-1-thread-3 准备执行
pool-1-thread-2 准备执行
pool-1-thread-5 准备执行
pool-1-thread-4 准备执行
pool-1-thread-2 等待交换
pool-1-thread-1 交换得到数据为:pool-1-thread-2
pool-1-thread-2 交换得到数据为:pool-1-thread-1
pool-1-thread-3 等待交换
pool-1-thread-4 等待交换
pool-1-thread-4 交换得到数据为:pool-1-thread-3
pool-1-thread-3 交换得到数据为:pool-1-thread-4
pool-1-thread-5 等待交换
Exchanger必须成对出现,否则会像上面代码执行结果那样,pool-1-thread-5一直阻塞等待与其交换数据的线程,为了避免这一现象,可以使用exchange(V x, long timeout, TimeUnit unit)设置最大等待时长
原文出处:https://www.shuzhiduo.com/A/kPzOYlXa5x/
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8