ZooKeeper源码分析系列一开篇基础知识剖析

386次阅读  |  发布于3年以前

一、ZooKeeper总体介绍

1.1、什么是zookeeper

ZooKeeper 是一个分布式的,开放源码的分布式应用程序协同服务+存储系统,同时是一款世界级的优秀开源产品,在大数据生态系统中 Hadoop、Storm、HBase、Spark、Flink、Kafka 随处都是 ZooKeeper的应用场景。特别是在粗粒度分布式锁、分布式选主、主备高可用切换等不需要高 TPS 的场景下有不可替代的作用。

1.2、ZooKeeper 应用场景

很多分布式协调服务都可以用 ZooKeeper 来做,其中典型应用场景如下:

1、配置管理:比如微服务系统,各个独立服务都要使用集中化的配置管理,这个时候就需要 ZooKeeper。

2、组成员管理:比如上面讲到的 HBase 其实就是用来做集群的组成员管理。

3、各种分布式锁:ZooKeeper 适用于存储和协同相关的关键数据,不适合用于大数据量存储。如果要存 KV 或者大量的业务数据,还是要用数据库或者其他 NoSql 来做。

4、注册中心:大多数中小型公司都用zk来做注册中心

至于为什么 ZooKeeper 不适合大数据量存储呢?主要有以下两个原因:

1、设计方面:ZooKeeper 需要把所有的数据(它的 data tree)加载到内存中。这就决定了ZooKeeper 存储的数据量受内存的限制。一般的数据库系统例如 MySQL可以存储大于内存的数据,这是因为 InnoDB 是基于 B-Tree 的存储引擎(基于内存+磁盘一致性)。

2、工程方面:ZooKeeper 的设计目标是为协同服务提供数据存储,数据的高可用性和性能是最重要的系统指标,处理大数量不是 ZooKeeper 的首要目标。因此,ZooKeeper 不会对大数量存储做太多工程上的优化。

二.ZooKeeper源码环境

2.1、ZooKeeper版本选择

在了解任何技术源码的时候,最重要的两件事要搞清楚:

1、版本如何选择

2、源码环境准备

zookeeper的大版本:

1、zookeeper-3.4.x 企业最常用,大数据技术组件最常用

2、zookeeper-3.5.x

3、zookeeper-3.6.x

最总结论:zookeeper-3.4.14.tar.gz,安装包就是源码包, ZooKeeper-3.5 以上,源码 和 安装包就分开了。

2.2、 ZooKeeper源码环境准备

1、准备一个IDE:IDEA

2、从官网下载源码包,IDEA去导入这个源码项目即可

3、稍微等待一下,maven去下载一些依赖jar

4、从官网下载 zookeeper-3.4.14.tar.gz 安装包,该安装包直接包含源码或者从 github 去拉取源码项目

三.ZooKeeper基础之序列化机制

3.1、序列化使用场景

1、当在网络中需要进行消息,数据传输,那么这些数据就需要进行序列化和反序列化

2、当数据需要被持久化到磁盘的时候

3.2、什么是序列化, 为什么要进行序列化操作

1、序列化是指将我们定义好的 go/php/java 类型转化成数据流的形式。之所以这么做是因为在网络传输过程中,TCP 协议采用“流通信”的方式,提供了可以读写的字节流

2、任何一个分布式系统的底层,都必然会有网络通信,这就必然要提供一个分布式通信框架和序列化机制。所以我们在看 ZooKeeper 源码之前,先搞定 ZooKeeper 网络通信和序列化。

3.3、序列化实现方式

3.3.1、java序列化实现

Java 中进行序列化和反序列化的过程中,主要使用 ObjectInputStream 和 ObjectOutputStream 来进行具体的序列化和反序列化。

3.3.2、hadoop的序列化实现

3.3.3、ZooKeeper 中的序列化机制

序列化的 API 主要在 zookeeper-jute 子项目中。

3.3.4、重点API:

org.apache.jute.InputArchive:反序列化需要实现的接口,其中各种 read 开头的方法,都是反序列化方法

org.apache.jute.OutputArchive:所有进行序列化操作的都是实现这个接口,其中各种 write 开头的方法都是序列化方法。

org.apache.jute.Index:用于迭代数据进行反序列化的迭代器

org.apache.jute.Record:在 ZooKeeper 要进行网络通信的对象,都需要实现这个接口。里面有序列化和反序列化两个重要的方法

四、ZooKeeper基础之持久化机制

对于只要底层涉及到关于数据的存储,读写操作, 一般都会有一个持久化机制来保证.那么ZooKeeper的数据模型主要涉及两类知识:数据模型 和 持久化机制, 背后是两套API来支撑

1、数据模型 : ZKDataBase + DataTree + DataNode

2、持久化机制: TxnLog + SnapLog

ZooKeeper 本身是一个对等架构(内部选举,从所有 learner 中选举一个 leader, 剩下的成为follower)

1、每个节点上都保存了整个系统的所有数据(leader存储了数据,所有的follower节点都是leader的副本节点)

2、每个节点上的都把数据放在磁盘一份,放在内存一份, 保证磁盘跟内存一致性,来平衡读写性能

ZooKeeper的数据模型,抽象出了重要的三个API用来完成数据的管理:

1、ZKDataBase 负责管理 DataTree ,执行 DataTree 的相关 快照和恢复的操作

2、DataTree znode系统的完整抽象, 整个数据树结构

3、DataNode znode 系统中的一个节点的抽象

关于 ZooKeeper 中的数据在内存中的组织,其实就是一棵树:

1、这棵树就叫做:DataTree (抽象了一棵树)

2、这棵树上的节点:DataNode (抽象一个节点)

3、关于管理这个 DataTree 的组件就是 ZKDataBase (内存数据库:针对 DataTree 能做各种操作)

ZooKeeper 的持久化的一些操作接口,都在org.apache.zookeeper.server.persistence 包中。

主要的类的介绍:

第一组:主要是用来操作日志的(如果客户端往zk中写入一条数据,则记录一条日志)

TxnLog,接口,读取事务性日志的接口。

FileTxnLog,实现TxnLog接口,添加了访问该事务性日志的API。

第二组:拍摄快照(当内存数据持久化到磁盘)

Snapshot,接口类型,持久层快照接口。

FileSnap,实现Snapshot接口,负责存储、序列化、反序列化、访问快照。

第三组;两个成员变量:TxnLog和SnapShot

FileTxnSnapLog,封装了TxnLog和SnapShot。

第四组:工具类

Util,工具类,提供持久化所需的API。

五、ZooKeeper基础之网络通信机制

Java IO 有几个种类:

1、BIO JDK-1.1(编码简单,效率低) 阻塞模型

2、NIO JDK-1.4(效率有提升,编码复杂) 基于reactor实现的异步非阻塞网络通信模型 通常的IO的选择: 1)、原生NIO 2)、基于NIO实现的网络通信框架:netty

3、AIO JDK-1.7(效率最高,编码复杂度一般) 真正的异步非阻塞通信模型

NIO 的三大API:

1、Buffer

2、Channel

3、Selector

ZooKeeper 中的通信有两种方式:

1、NIO,默认使用NIO

2、Netty

两个最重要的API:

ServerCnxn 服务端的通信组件

ClientCnxn 客户端的通信组件

关于客户端和服务端的一个定义:谁发请求,谁就是客户端,谁接收和处理请求,谁就是服务端

1、真正的client给zookeeper发请求

2、zookeeper中的leader给follower发命令

3、zookeeper中的followe给leader发请求

ServerCnxn实现包:org.apache.zookeeper.server.ServerCnxn

ServerCnxn实现包

详细说明:

Stats,表示ServerCnxn上的统计数据。

Watcher,表示事件处理,监听器

ServerCnxn,表示服务器连接,表示一个从客户端到服务器的连接。

ClientCnxn,存在于客户端用来执行通信的组件

NettyServerCnxn,基于Netty的连接的具体实现。

NIOServerCnxn,基于NIO的连接的具体实现。

六、Zookeeper基础之Watcher工作机制

客户端的 Watcher 注册:

1、org.apache.zookeeper.ZooKeeper:客户端基础类、存储了ClientCnxn和ZkWatcherManager

2、ZKWatchManager:ZooKeeper的内部类,实现了ClientWatchManager接口,主要用来存储各种类型的Watcher,主要有三种:dataWatches、existWatches、childWatches以及一个默认的defaultWatcher

3、org.apache.zookeeper.ClientCnxn:与服务端的交互类,主要包含以下对象:LinkedListoutgoingQueue、SendThread 和 EventThread,其中outgoingQueue未待发送给服务端的Packet列表,SendThread线程负责和服务端进行请求交互,而EventThread线程则负责客户端Watcher事件的回调执行

4、WatchRegistration:Zookeeper的内容类,包装了Watcher和clientPath,并且负责Watcher的注册

5、Packet:ClientCnxn的内部类,与Zookeeper服务端通信的交互类

两条主线

1、实现主线:Watcher + WatchedEvent

2、管理主线:WatchManager(负责响应watcher.process(watchedEvent)) + ZKWatchManager(负责注册等相关管理)

组件说明:

Watcher,接口类型,其定义了process方法,需子类实现。

Event,接口类型,Watcher的内部类,无任何方法。

KeeperState,枚举类型,Event的内部类,表示Zookeeper所处的状态。

EventType,枚举类型,Event的内部类,表示Zookeeper中发生的事件类型。

WatchedEvent,表示对ZooKeeper上发生变化后的反馈,包含了KeeperState和EventType。

ClientWatchManager,接口类型,表示客户端的Watcher管理者,其定义了materialized方法,需子类实现。

ZKWatchManager,Zookeeper的内部类,继承ClientWatchManager。

MyWatcher,ZooKeeperMain的内部类,继承Watcher。

ServerCnxn,接口类型,继承Watcher,表示客户端与服务端的一个连接。

WatchManager,管理Watcher。

Watcher 主要工作流程:

1 、用户调用 Zookeeper 的 getData 方法,并将自定义的 Watcher 以参数形式传入,该方法的作用主要是封装请求,然后调用 ClientCnxn 的 submitRequest 方法提交请求

2 、 ClientCnxn 在调用 submitRequest 提交请求时,会将 WatchRegistration(封装了我们传入的Watcher 和clientPath )以参数的形式传入,submitRequest 方法主要作用是将信息封装成Packet(ClientCnxn的内部类),并将封装好的 Packet 加入到 ClientCnxn 的待发送列表中(LinkedList outgoingQueue)

3 、 SendThread 线程不断地从 outgoingQueue 取出未发送的 Packet 发送给客户端并且将该 Packet加入pendingQueue (等待服务器响应的Packet列表)中,并通过自身的 readResponse 方法接收服务端的响应

4 、SendThread 接收到客户端的响应以后,会调用 ClientCnxn 的finishPacket 方法进行 Watcher方法的注册

5 、在 finishPacket 方法中,会取出 Packet 中的 WatchRegistration 对象,并调用其 register 方法,从ZKWatchManager 取出对应的 dataWatches、existWatches 或者 childWatches 其中的一个Watcher 集合,然后将自己的 Watcher 添加到该 Watcher 集合中。

未完待续,下篇接着继续分析

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8