雪花算法的原理和 Java 实现

572次阅读  |  发布于3年以前

SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 ID,12 bit 作为序列号。

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 ID 都是正数,所以第一个 bit 统一都是 0。

41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以表示 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

10 bit:记录工作机器 ID。

代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 ID,5 个 bit 代表机器 ID。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

12 bit:这个是用来记录同一个毫秒内产生的不同 ID。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 ID。

简单来说,你的某个服务假设要生成一个全局唯一 ID,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 ID。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 ID = 17,机器 ID = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 ID,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 ID,还有 5 个 bit 设置上机器 ID。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 ID 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 ID 就出来了,类似于:

这个算法可以保证,一个机房的一台机器上,在同一毫秒内生成了一个唯一的 ID。可能一个毫秒内会生成多个 ID,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 ID。

SnowFlake 算法的实现代码如下:


 public class IdWorker {

  //因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

  //机器ID  2进制5位  32位减掉1位 31个
  private long workerId;
  //机房ID 2进制5位  32位减掉1位 31个
  private long datacenterId;
  //代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
  private long sequence;
  //设置一个时间初始值    2^41 - 1   差不多可以用69年
  private long twepoch = 1585644268888L;
  //5位的机器id
  private long workerIdBits = 5L;
  //5位的机房id
  private long datacenterIdBits = 5L;
  //每毫秒内产生的id数 2 的 12次方
  private long sequenceBits = 12L;
  // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
  private long maxWorkerId = -1L ^ (-1L << workerIdBits);
  // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
  private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

  private long workerIdShift = sequenceBits;
  private long datacenterIdShift = sequenceBits + workerIdBits;
  private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
  private long sequenceMask = -1L ^ (-1L << sequenceBits);
  //记录产生时间毫秒数,判断是否是同1毫秒
  private long lastTimestamp = -1L;
  public long getWorkerId(){
    return workerId;
  }
  public long getDatacenterId() {
    return datacenterId;
  }
  public long getTimestamp() {
    return System.currentTimeMillis();
  }



  public IdWorker(long workerId, long datacenterId, long sequence) {

    // 检查机房id和机器id是否超过31 不能小于0
    if (workerId > maxWorkerId || workerId < 0) {
      throw new IllegalArgumentException(
          String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
    }

    if (datacenterId > maxDatacenterId || datacenterId < 0) {

      throw new IllegalArgumentException(
          String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
    }
    this.workerId = workerId;
    this.datacenterId = datacenterId;
    this.sequence = sequence;
  }

  // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
  public synchronized long nextId() {
    // 这儿就是获取当前时间戳,单位是毫秒
    long timestamp = timeGen();
    if (timestamp < lastTimestamp) {

      System.err.printf(
          "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
      throw new RuntimeException(
          String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
              lastTimestamp - timestamp));
    }

    // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
    // 这个时候就得把seqence序号给递增1,最多就是4096
    if (lastTimestamp == timestamp) {

      // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
      //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
      sequence = (sequence + 1) & sequenceMask;
      //当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
      if (sequence == 0) {
        timestamp = tilNextMillis(lastTimestamp);
      }

    } else {
      sequence = 0;
    }
    // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
    lastTimestamp = timestamp;
    // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
    // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
    // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
    return ((timestamp - twepoch) << timestampLeftShift) |
        (datacenterId << datacenterIdShift) |
        (workerId << workerIdShift) | sequence;
  }

  /**
   * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
   * @param lastTimestamp
   * @return
   */
  private long tilNextMillis(long lastTimestamp) {

    long timestamp = timeGen();

    while (timestamp <= lastTimestamp) {
      timestamp = timeGen();
    }
    return timestamp;
  }
  //获取当前时间戳
  private long timeGen(){
    return System.currentTimeMillis();
  }

  /**
   *  main 测试类
   * @param args
   */
  public static void main(String[] args) {
    System.out.println(1&4596);
    System.out.println(2&4596);
    System.out.println(6&4596);
    System.out.println(6&4596);
    System.out.println(6&4596);
    System.out.println(6&4596);
//    IdWorker worker = new IdWorker(1,1,1);
//    for (int i = 0; i < 22; i++) {
//      System.out.println(worker.nextId());
//    }
  }
}

SnowFlake 算法的优点

  1. 高性能高可用:生成时不依赖于数据库,完全在内存中生成。
  2. 容量大:每秒钟能生成数百万的自增 ID。
  3. ID 自增:存入数据库中,索引效率高。

SnowFlake 算法的缺点

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成 ID 冲突或者重复。

实际中我们的机房并没有那么多,我们可以改进改算法,将 10bit 的机器 ID 优化,成业务表或者和我们系统相关的业务。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8