浅谈分布式一致性:Raft 与 SOFAJRaft

412次阅读  |  发布于3年以前

一 分布式共识算法 (Consensus Algorithm)

1 如何理解分布式共识? 多个参与者针对某一件事达成完全一致:一件事,一个结论。 已达成一致的结论,不可推翻。

2 有哪些分布式共识算法?

二 Raft 介绍

1 特点:Strong Leader

另外,身为 leader 必须保持一直 heartbeat 的状态。

2 复制状态机

对于一个无限增长的序列a[1, 2, 3…],如果对于任意整数i, a[i]的值满足分布式一致性, 这个系统就满足一致性状态机的要求。

基本上所有的真实系统都会有源源不断的操作,这时候单独对某个特定的值达成一致显然是不够的。为了让真实系统保证所有的副本的一致性,通常会把操作转化为 write-ahead-log(WAL)。然后让系统中所有副本对 WAL 保持一致,这样每个副本按照顺序执行 WAL 里的操作,就能保证最终的状态是一致的。

3 Raft 中的基本概念

Raft-node 的 3 种角色/状态

Message 的 3 种类型

任期逻辑时钟

4 Raft 功能分解

Leader 选举

超时驱动:Heartbeat / Election timeout

随机的超时时间:降低选举碰撞导致选票被瓜分的概率

选举流程:Follower --> Candidate (选举超时触发)

选举动作:

New Leader 选取原则 (最大提交原则):

安全性:一个 term,最多选出一个 leader,可以没 leader,下一个 term 再选。

影响 raft 选举成功率的几个时间参数:

随机选主触发时间:Random(ET, 2ET)

日志复制

Raft 日志格式:

Log replication关键点:

Followers 日志有效性检查:

Followers 日志恢复:

Commit Index 推进

CommitIndex (TermId, LogIndex) :

CommitIndex推进:

AppendEntries RPC

阶段小结:现在我们能用 raft 做什么?

三 SOFAJRaft

一个纯 Java 的 raft 算法实现库,使用 Java 重写了所有功能,并有一些改进和优化。

1 SOFAJRaft 整体功能

功能支持

Leader election:选主。 Log replication and recovery:日志复制和日志恢复,log recovery就是要保证已经被 commit 的数据一定不会丢失,log recovery 包含两个方面

Snapshot and log compaction:定时生成 snapshot,实现 log compaction加速启动和恢复,以及InstallSnapshot 给 followers 拷贝数据。

Membership change:集群线上配置变更,增加节点、删除节点、替换节点等。

Transfer leader:主动变更 leader,用于重启维护,leader 负载平衡等。

Symmetric network partition tolerance:对称网络分区容忍性。

Pre-Vote:如上图 S1 为当前 leader,网络分区造成 S2 不断增加本地 term,为了避免网络恢复后S2发起选举导致正在良心工作的 leader step-down, 从而导致整个集群重新发起选举,在 request-vote 之前会先进行 pre-vote(currentTerm + 1,lastLogIndex, lastLogTerm),多数派成功后才会转换状态为 candidate 发起真正的 request-vote,所以分区后的节点,pre-vote不会成功,也就不会导致集群一段时间内无法正常提供服务。

Asymmetric network partition tolerance:非对称网络分区容忍性。

如上图 S1 为当前 leader,S2 不断超时触发选主,S3 提升 term 打断当前 lease,从而拒绝 leader 的更新,这个时候可以增加一个 trick 的检查,每个 follower 维护一个时间戳记录收到 leader 上数据更新的时间(也包括心跳),只有超过 election timeout 之后才允许接受 request-vote 请求。

Fault tolerance:容错性,少数派故障,不影响系统整体可用性。

Workaround when quorate peers are dead:多数派故障时整个 grop 已不具备可用性, 安全的做法是等待多数节点恢复,只有这样才能保证数据安全,但是如果业务更追求可用性,放弃数据一致性的话可以通过手动 reset_peers 指令迅速重建整个集群,恢复集群可用。

Metrics:SOFAJRaft 内置了基于 metrics 类库的性能指标统计,具有丰富的性能统计指标。

Jepsen:除了单元测试之外,SOFAJRaft 还使用 jepsen 这个分布式验证和故障注入测试框架模拟了很多种情况,都已验证通过。

性能优化

Batch:SOFAJRaft 中整个链路都是 batch 的,依靠 disruptor 中的 MPSC 模型批量消费,包括但不限于

Replication pipeline:流水线复制,leader 跟 followers 节点的 log 同步是串行 batch 的方式,每个 batch 发送之后需要等待 batch 同步完成之后才能继续发送下一批(ping-pong), 这样会导致较长的延迟。可以通过 leader 跟 followers 节点之间的 pipeline 复制来改进,有效降低更新的延迟, 提高吞吐。

Append log in parallel:Leader 持久化 log entries 和向 followers 发送 log entries 是并行的。

Fully concurrent replication:Leader 向所有 follwers 发送 log 也是完全并发的。

Asynchronous:Jraft 中整个链路几乎没有任何阻塞,完全异步的,是一个 callback 编程模型。

ReadIndex:优化 raft read 走 raft log 的性能问题,每次 read,仅记录 commitIndex,然后发送所有 peers heartbeat 来确认 leader 身份,如果 leader 身份确认成功,等到 applied index >= commitIndex,就可以返回 client read 了,基于 ReadIndex 可以很方便的提供线性一致读,不过 commitIndex 是需要从 leader 那里获取的,多了一轮RPC。

Lease Read:通过租约(lease)保证 leader 的身份,从而省去了 readIndex 每次 heartbeat 确认 leader 身份,性能更好, 但是通过时钟维护 lease 本身并不是绝对的安全(jraft 中默认配置是 readIndex,因为 readIndex 性能已足够好)。

2 SOFAJRaft 设计

SOFAJRaft - Raft Node

Node:Raft 分组中的一个节点,连接封装底层的所有服务,用户看到的主要服务接口,特别是 apply(task) 用于向 raft group 组成的复制状态机集群提交新任务应用到业务状态机。 存储:

状态机:

复制:

RPC 模块用于节点之间的网络通讯:

KV Store:SOFAJRaft 只是一个 lib,KV Store 是 SOFAJRaft 的一个典型的应用场景,把它放进图中以便更好的理解 SOFAJRaft。

SOFAJRaft - Raft Group

SOFAJRaft - Multi Raft Group

3 SOFAJRaft 实现细节

高效的线性一致读 什么是线性一致读? 所谓线性一致读,一个简单的例子就是在 t1 的时刻我们写入了一个值, 那么在 t1 之后, 我们一定能读到这个值,不可能读到 t1 之前的旧值 (想想 Java 中的 volatile 关键字,说白了线性一致读就是在分布式系统中实现 volatile 语义)。

上图Client A、B、C、D均符合线性一致读,其中 D 看起来是 stale read,其实并不是, D 请求横跨了3个阶段,而读可能发生在任意时刻,所以读到 1 或 2 都行。

重要:接下来的讨论均基于一个大前提,就是业务状态机的实现必须是满足线性一致性的, 简单说就是也要具有 Java volatile 的语义。

1)直接点,是否可以直接从当前 leader 节点读?

怎么确定当前的 leader 真的是 leader(网络分区)?

2)最简单的实现方式:读请求走一遍 raft 协议

有什么问题?

3)ReadIndex Read 这是 raft 论文中提到过的一种优化方案,具体来说:

通过ReadIndex,也可以很容易在 followers 节点上提供线性一致读:

ReadIndex小结:

4)Lease Read

Lease read 与 ReadIndex 类似,但更进一步,不仅省去了 log,还省去了网络交互。它可以大幅提升读的吞吐也能显著降低延时。

基本的思路是 leader 取一个比 election timeout 小的租期(最好小一个数量级),在租约期内不会发生选举,这就确保了 leader 不会变,所以可以跳过 ReadIndex 的第二步, 也就降低了延时。可以看到, Lease read 的正确性和时间是挂钩的,因此时间的实现至关重要,如果漂移严重,这套机制就会有问题。

实现方式:

5)更进一步:Wait Free

到此为止 lease 省去了 ReadIndex 的第 2 步(heartbeat),实际上还能再进一步,省去第 3 步。

我们想想前面的实现方案的本质是什么? 当前节点的状态机达到“读”这一刻的时间点 相同或者更新的状态。

那么更严格一点的约束就是:当前时刻,当前节点的状态机就是最新的。

问题来了,leader 节点的状态机能保证一定是最新的吗?

小结:Wait Free 机制将最大程度的降低读延迟,SOFAJRaft 暂未实现 wait free 这一优化,不过已经在计划中。

在 SOFAJRaft 中发起一次线性一致读请求:

// KV 存储实现线性一致读
public void readFromQuorum(String key, AsyncContext asyncContext) {
    // 请求 ID 作为请求上下文传入
    byte[] reqContext = new byte[4];
    Bits.putInt(reqContext, 0, requestId.incrementAndGet());
    // 调用 readIndex 方法, 等待回调执行
    this.node.readIndex(reqContext, new ReadIndexClosure() {

        @Override
        public void run(Status status, long index, byte[] reqCtx) {
            if (status.isOk()) {
                try {
                    // ReadIndexClosure 回调成功, 可以从状态机读取最新数据返回
                    // 如果你的状态实现有版本概念, 可以根据传入的日志 index 编号做读取
                    asyncContext.sendResponse(new ValueCommand(fsm.getValue(key)));
                } catch (KeyNotFoundException e) {
                    asyncContext.sendResponse(GetCommandProcessor.createKeyNotFoundResponse());
                }
            } else {
                // 特定情况下, 比如发生选举, 该读请求将失败
                asyncContext.sendResponse(new BooleanCommand(false, status.getErrorMsg()));
            }
        }
    });
}

四 SOFAJRaft 应用场景

1 SOFAJRaft 可以做什么

2 用户案例

3 简单实践:基于 SOFAJRaft 设计一个简单的 KV Store

到目前为止,我们似乎还没看到 SOFAJRaft 作为一个 lib 有什么特别之处, 因为 SOFAJRaft 能办到的 zk,etcd 似乎基本上也都可以办到, 那么 SOFAJRaft 算不算重复造轮子?

为了说明 SOFAJRaft 具有很好的想象空间以及扩展能力,下面再介绍一个基于 SOFAJRaft 的复杂一些的实践。

4 复杂一点的实践:基于 SOFAJRaft 的 Rhea KV 的设计

功能名词

特点

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8