你真的会排序吗?一次搞定九大排序策略

284次阅读  |  发布于3年以前

14.1 冒泡排序

原理:

从左到右,相邻元素进行比较,如果前一个元素值大于后一个元素值(正序),则交换,这样一轮下来,将最大的数在最右边冒泡出来。这样一轮一轮下来,最后实现从小到大排序。

动图演示:

代码实现:

function bubbleSort(arr) {
    for (let i = 0; i < arr.length; i++) {
        for (let j = 0; j < arr.length - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                const temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}

// 改进冒泡排序
function bubbleSort1(arr) {
    for (let i = 0; i < arr.length; i++) {
        // 提前退出冒泡循环的标识位
        let flag = false;
        for (let j = 0; j < arr.length - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                const temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
                flag = true;
                // 表示发生了数据交换
            }
        }
        // 没有数据交换
        if(!flag) break
    }
}


// 测试
let arr = [1, 3, 2, 5, 4]
bubbleSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]

let arr1 = [1, 3, 2, 5, 4]
bubbleSort1(arr1)
console.log(arr1) // [1, 2, 3, 4, 5]

复杂度分析:

14.2 选择排序

原理

从未排序的序列中找到最大(或最小的)放在已排序序列的末尾(为空则放在起始位置),重复该操作,知道所有数据都已放入已排序序列中。

动态演示

代码实现

function selectionSort(arr) {
  let length = arr.length,
      indexMin
  for(let i = 0; i < length - 1; i++) {
    indexMin = i
    for(let j = i; j < length; j++) {
      if(arr[indexMin] > arr[j]) {
        indexMin = j
      }
    }
    if(i !== indexMin) {
      let temp = arr[i]
      arr[i] = arr[indexMin]
      arr[indexMin] = temp
    }
  }
}

// 测试
let arr = [1, 3, 2, 5, 4]
selectionSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]

复杂度分析

**时间复杂度:**O(n^2^)

**空间复杂度:**O(1)

14.3 归并排序

原理

它采用了分治策略,将数组分成2个较小的数组,然后每个数组再分成两个更小的数组,直至每个数组里只包含一个元素,然后将小数组不断的合并成较大的数组,直至只剩下一个数组,就是排序完成后的数组序列。

实现步骤:

动图演示

代码实现

function mergeSort(arr) {
  let array = mergeSortRec(arr)
  return array
}

// 若分裂后的两个数组长度不为 1,则继续分裂
// 直到分裂后的数组长度都为 1,
// 然后合并小数组
function mergeSortRec(arr) {
  let length = arr.length
  if(length === 1) {
    return arr
  }
  let mid = Math.floor(length / 2),
      left = arr.slice(0, mid),
      right = arr.slice(mid, length)
  return merge(mergeSortRec(left), mergeSortRec(right))
}

// 顺序合并两个小数组left、right 到 result
function merge(left, right) {
  let result = [],
      ileft = 0,
      iright = 0
  while(ileft < left.length && iright < right.length) {
    if(left[ileft] < right[iright]){
      result.push(left[ileft ++])
    } else {
      result.push(right[iright ++])
    }
  }
  while(ileft < left.length) {
    result.push(left[ileft ++])
  }
  while(iright < right.length) {
    result.push(right[iright ++])
  }
  return result
}

// 测试
let arr = [1, 3, 2, 5, 4]
console.log(mergeSort(arr)) // [1, 2, 3, 4, 5]

复杂度分析

**时间复杂度:**O(nlog~2~n)

**空间复杂度:**O(n)

14.4 快速排序

原理

和归并排序一致,它也使用了分治策略的思想,它也将数组分成一个个小数组,但与归并不同的是,它实际上并没有将它们分隔开。

快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

快排的过程简单的说只有三步:

具体按以下步骤实现:

注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准:

但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。

代码实现

let quickSort = (arr) => {
  quick(arr, 0 , arr.length - 1)
}

let quick = (arr, left, right) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    if(left < index - 1) {
      quick(arr, left, index - 1)
    }
    if(index < right) {
      quick(arr, index, right)
    }
  }
}

// 一次快排
let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i <= j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i <= j) {
      swap(arr, i, j)
      i += 1
      j -= 1
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2])  // 4

快排是从小到大排序,所以第 k 个最大值在 n-k 位置上

复杂度分析

14.5 希尔排序

1959年Shell发明,第一个突破 O(n^2^) 的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。

插入排序

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入

代码实现:

function insertionSort(arr) {
    let n = arr.length;
    let preIndex, current;
    for (let i = 1; i < n; i++) {
        preIndex = i - 1;
        current = arr[i];
        while (preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}

插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

复杂度分析:

希尔排序

回顾一下上面的插入排序:

所以,如果序列足够乱的话,时间复杂度为 O(n^2^)

希尔排序又是如何优化的喃?

希尔排序又叫缩小增量排序,就是把数列进行分组(组内不停使用插入排序),直至从宏观上看起来有序,最后插入排序起来就容易了(无须多次移位或交换)。

其中组的数量称为 增量 ,显然的是,增量是不断递减的(直到增量为1)

那我们有是如何进行分组喃?

**往往的:**如果一个数列有 8 个元素,我们第一趟的增量是 4 ,第二趟的增量是 2 ,第三趟的增量是 1 。如果一个数列有 18 个元素,我们第一趟的增量是 9 ,第二趟的增量是 4 ,第三趟的增量是2 ,第四趟的增量是 1

很明显我们可以用一个序列来表示增量:n/2、(n/2)/2、...、1每次增量都/2

例如:

let arr = [4, 1, 5, 8, 7, 3]

排序前:

第一趟排序:

此时数组是这样子的:[1, 4, 5, 8, 3, 7]

第二趟排序:

代码实现:

function shellSort(arr) {
    let n = arr.length;
    for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {
        for (let i = gap; i < n; i++) {
            let j = i;
            let current = arr[i];
            while (j - gap >= 0 && current < arr[j - gap]) {
                 arr[j] = arr[j - gap];
                 j = j - gap;
            }
            arr[j] = current;
        }
    }
    return arr;
}

复杂度分析:

14.6 计数排序

原理

计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。

作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。它是一种典型的拿空间换时间的排序算法

代码实现

function countingSort(arr, maxValue) => {
    // 开辟的新的数组,用于将输入的数据值转化为键存储
    var bucket = new Array(maxValue + 1),
        sortedIndex = 0,
        arrLen = arr.length,
        bucketLen = maxValue + 1

    // 存储
    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0
        }
        bucket[arr[i]]++
    }

    // 将数据从bucket按顺序写入arr中
    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j]-- > 0) {
            arr[sortedIndex++] = j
        }
    }
    return arr
}

复杂度分析

14.7 桶排序

原理

桶排序是计数排序的升级版。它也是利用函数的映射关系。

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

完整步骤:

// 桶排序
let bucketSort = (arr) => {
    let bucket = [], res = []
    arr.forEach((value, key) => {
        // 利用映射关系(出现频率作为下标)将数据分配到各个桶中
        if(!bucket[value]) {
            bucket[value] = [key]
        } else {
            bucket[value].push(key)
        }
    })
    // 遍历获取出现频率
    for(let i = 0;i <= bucket.length - 1;i++){
        if(bucket[i]) {
            res.push(...bucket[i])
        }
 }
 return res
}

复杂度分析:

14.8 基数排序

原理

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

完整步骤:

动图演示

代码实现

//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

复杂度分析

基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

14.9 堆排序

原理

堆是一棵完全二叉树,它可以使用数组存储,并且大顶堆的最大值存储在根节点(i=1),所以我们可以每次取大顶堆的根结点与堆的最后一个节点交换,此时最大值放入了有效序列的最后一位,并且有效序列减1,有效堆依然保持完全二叉树的结构,然后堆化,成为新的大顶堆,重复此操作,知道有效堆的长度为 0,排序完成。

完整步骤为:

动图演示

代码实现

function heapSort(items) {
    // 构建大顶堆
    buildHeap(items, items.length-1)
    // 设置堆的初始有效序列长度为 items.length - 1
    let heapSize = items.length - 1
    for (var i = items.length - 1; i > 1; i--) {
        // 交换堆顶元素与最后一个有效子元素
        swap(items, 1, i);
        // 有效序列长度减 1
        heapSize --;
        // 堆化有效序列(有效序列长度为 currentHeapSize,抛除了最后一个元素)
        heapify(items, heapSize, 1);
    }
    return items;
}

// 原地建堆
// items: 原始序列
// heapSize: 有效序列长度
function buildHeap(items, heapSize) {
    // 从最后一个非叶子节点开始,自上而下式堆化
    for (let i = Math.floor(heapSize/2); i >= 1; --i) {    
        heapify(items, heapSize, i);  
    }
}
function heapify(items, heapSize, i) {
    // 自上而下式堆化
    while (true) {
        var maxIndex = i;
        if(2*i <= heapSize && items[i] < items[i*2] ) {
            maxIndex = i*2;
        }
        if(2*i+1 <= heapSize && items[maxIndex] < items[i*2+1] ) {
            maxIndex = i*2+1;
        }
        if (maxIndex === i) break;
        swap(items, i, maxIndex); // 交换 
        i = maxIndex; 
    }
}  
function swap(items, i, j) {
    let temp = items[i]
    items[i] = items[j]
    items[j] = temp
}

// 测试
var items = [,1, 9, 2, 8, 3, 7, 4, 6, 5]
heapSort(items)
// [empty, 1, 2, 3, 4, 5, 6, 7, 8, 9]

测试成功

复杂度分析

14.10 加深

14.10.1 介绍一下快排原理以及时间复杂度,并实现一个快排

快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

快排的过程简单的说只有三步:

具体按以下步骤实现:

注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准:

但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。

代码实现

let quickSort = (arr) => {
  quick(arr, 0 , arr.length - 1)
}

let quick = (arr, left, right) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    if(left < index - 1) {
      quick(arr, left, index - 1)
    }
    if(index < right) {
      quick(arr, index, right)
    }
  }
}

// 一次快排
let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i <= j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i <= j) {
      swap(arr, i, j)
      i += 1
      j -= 1
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2])  // 4

快排是从小到大排序,所以第 k 个最大值在 n-k 位置上

复杂度分析

更多解答

14.10.2 打乱数组(洗牌算法)

打乱一个没有重复元素的数组。

示例:

// 以数字集合 1, 2 和 3 初始化数组。
int[] nums = {1,2,3};
Solution solution = new Solution(nums);

// 打乱数组 [1,2,3] 并返回结果。任何 [1,2,3]的排列返回的概率应该相同。
solution.shuffle();

// 重设数组到它的初始状态[1,2,3]。
solution.reset();

// 随机返回数组[1,2,3]打乱后的结果。
solution.shuffle();

解答:Fisher-Yates 洗牌算法

let Solution = function(nums) {
    this.nums = nums
};

Solution.prototype.reset = function() {
    return this.nums
};

Solution.prototype.shuffle = function() {
    let res = [...this.nums]
    let n = res.length
    for(let i = n-1; i >= 0; i--) {
        let randIndex = Math.floor(Math.random() * (i + 1))
        swap(res, randIndex, i)
    }
    return res
};

let swap = function(arr, i, j) {
    const temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

更多解答

14.10.3 阿里五面:说下希尔排序的过程?希尔排序的时间复杂度和空间复杂度又是多少?

1959年Shell发明,第一个突破 O(n^2^) 的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。

插入排序

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入

代码实现:

function insertionSort(arr) {
    let n = arr.length;
    let preIndex, current;
    for (let i = 1; i < n; i++) {
        preIndex = i - 1;
        current = arr[i];
        while (preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}

插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

复杂度分析:

希尔排序

回顾一下上面的插入排序:

所以,如果序列足够乱的话,时间复杂度为 O(n^2^)

希尔排序又是如何优化的喃?

希尔排序又叫缩小增量排序,就是把数列进行分组(组内不停使用插入排序),直至从宏观上看起来有序,最后插入排序起来就容易了(无须多次移位或交换)。

其中组的数量称为 增量 ,显然的是,增量是不断递减的(直到增量为1)

那我们有是如何进行分组喃?

往往的: 如果一个数列有 8 个元素,我们第一趟的增量是 4 ,第二趟的增量是 2 ,第三趟的增量是 1 。如果一个数列有 18 个元素,我们第一趟的增量是 9 ,第二趟的增量是 4 ,第三趟的增量是2 ,第四趟的增量是 1

很明显我们可以用一个序列来表示增量:n/2、(n/2)/2、...、1每次增量都/2

例如:

let arr = [4, 1, 5, 8, 7, 3]

排序前:

第一趟排序:

此时数组是这样子的:[1, 4, 5, 8, 3, 7]

第二趟排序:

代码实现:

function shellSort(arr) {
    let n = arr.length;
    for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {
        for (let i = gap; i < n; i++) {
            let j = i;
            let current = arr[i];
            while (j - gap >= 0 && current < arr[j - gap]) {
                 arr[j] = arr[j - gap];
                 j = j - gap;
            }
            arr[j] = current;
        }
    }
    return arr;
}

复杂度分析:

更多解答

14.10.4 排序链表

在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序。

示例 1:

输入: 4->2->1->3
输出: 1->2->3->4

示例 2:

输入: -1->5->3->4->0
输出: -1->0->3->4->5

解答:采用归并排序

归并排序采用了分治策略,将数组分成2个较小的数组,然后每个数组再分成两个更小的数组,直至每个数组里只包含一个元素,然后将小数组不断的合并成较大的数组,直至只剩下一个数组,就是排序完成后的数组序列。

对应于链表喃?

4->2->1->3

第一步:分割

第二步:归并(合并有序链表)

代码实现

let sortList = function(head) {
    return mergeSortRec(head)
}

// 归并排序
// 若分裂后的两个链表长度不为 1,则继续分裂
// 直到分裂后的链表长度都为 1,
// 然后合并小链表
let mergeSortRec = function (head) {
    if(!head || !head.next) {
        return head
    }

    // 获取中间节点
    let middle = middleNode(head)
    // 分裂成两个链表
    let temp = middle.next
    middle.next = null
    let left = head, right = temp
    // 继续分裂(递归分裂)
    left = mergeSortRec(left)
    right = mergeSortRec(right)
    // 合并两个有序链表
    return mergeTwoLists(left, right)
}

// 获取中间节点
// - 如果链表长度为奇数,则返回中间节点
// - 如果链表长度为偶数,则有两个中间节点,这里返回第一个
let middleNode = function(head) {
    let fast = head, slow = head
    while(fast && fast.next && fast.next.next) {
        slow = slow.next
        fast = fast.next.next
    }
    return slow
}

// 合并两个有序链表
let mergeTwoLists = function(l1, l2) {
    let preHead = new ListNode(-1);
    let cur = preHead;
    while(l1 && l2){
        if(l1.val < l2.val){
            cur.next = l1;
            l1 = l1.next;
        }else{
            cur.next = l2;
            l2 = l2.next;
        }
        cur = cur.next;
    }
    cur.next = l1 || l2;
    return preHead.next;
}

引入递归算法的复杂度分析:

复杂度分析

关于复杂度分析,请看这篇:前端进阶算法1:如何分析、统计算法的执行效率和资源消耗?

优化递归

使用迭代代替递归,优化时间复杂度:O(logn) —> O(1)

更多解答

14.10.5 扑克牌问题

魔术师手中有一堆扑克牌,观众不知道它的顺序,接下来魔术师:

如此往复(不断重复以上两步),直到魔术师手上的牌全部都放到了桌子上。

此时,桌子上的牌顺序为:(牌顶) 1,2,3,4,5,6,7,8,9,10,11,12,13 (牌底)。

问:原来魔术师手上牌的顺序,用函数实现。

解答:反向推导

假设,原来魔术师手上牌的顺序数组为 origin ,最后放在桌子上的顺序数组为 result

正向的操作为: origin 取出第一个插入 result 前面, origin 再取出第一个换到自己的末尾,如此重复;

反向操作为: origin 最后一个放到自己的第一个前面, result 拿出第一个插入 origin 前面,如此重复;

const calc = (arr) => {
    const origin = [];
    for (let i = 0; i < arr.length; i++) {
        if (origin.length) {
            const item = origin.pop();
            origin.unshift(item);
        }
        origin.unshift(result[i])
    }
    return origin;
}

// 测试
const result = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
// 原有顺序
calc(result)
// [13, 2, 12, 6, 11, 3, 10, 5, 9, 1, 8, 4, 7]

更多解答

14.10.6 有效三角形的个数

给定一个包含非负整数的数组,你的任务是统计其中可以组成三角形三条边的三元组个数。

示例 1:

输入: [2,2,3,4]
输出: 3
解释:
有效的组合是: 
2,3,4 (使用第一个 2)
2,3,4 (使用第二个 2)
2,2,3

注意:

本题可结合:

一起练习

解法:排序+双指针

我们知道三角形的任意两边之和大于第三边,任意两边之差小于第三边,如果这三条边长从小到大为 abc ,当且仅当 a + b > c 这三条边能组成三角形

解题思路: 先数组排序,排序完后,固定最长的边,利用双指针法判断其余边

nums[nums.length - 1] 作为最长的边 nums[k]k = nums.length - 1

nums[i] 作为最短边,以 nums[nums.length - 2] 作为第二个数 nums[j]j = nums.length - 2 ) ,

判断 nums[i] + nums[j] 是否大于 nums[k]

代码实现:

let triangleNumber = function(nums) {
    if(!nums || nums.length < 3) return 0
    let count = 0
    // 排序
    nums.sort((a, b) => a - b) 
    for(let k = nums.length - 1; k > 1; k--){
        let i = 0, j = k - 1
        while(i < j){ 
            if(nums[i] + nums[j] > nums[k]){
                count += j - i
                j--
            } else {
                i++
            }
        }
    }       
    return count
}

复杂度分析:

注意:

关于 Array.prototype.sort() ,ES 规范并没有指定具体的算法,在 V8 引擎中, 7.0 版本之前,数组长度小于10时, Array.prototype.sort() 使用的是插入排序,否则用快速排序。

在 V8 引擎 7.0 版本之后就舍弃了快速排序,因为它不是稳定的排序算法,在最坏情况下,时间复杂度会降级到 O(n2)。

而是采用了一种混合排序的算法:TimSort

这种功能算法最初用于Python语言中,严格地说它不属于以上10种排序算法中的任何一种,属于一种混合排序算法:

在数据量小的子数组中使用插入排序,然后再使用归并排序将有序的子数组进行合并排序,时间复杂度为 O(nlogn)

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8