快,有时候并不是劣势,MySQL面试夺命20问

383次阅读  |  发布于3年以前

数据库架构

说说MySQL 的基础架构图

给面试官讲一下 MySQL 的逻辑架构,有白板可以把下面的图画一下,图片来源于网络。

Mysql逻辑架构图主要分三层:

(1)第一层负责连接处理,授权认证,安全等等

(2)第二层负责编译并优化SQL

(3)第三层是存储引擎。

一条SQL查询语句在MySQL中如何执行的?

SQL 优化

日常工作中你是怎么优化SQL的?

可以从这几个维度回答这个问题:

1,优化表结构

(1)尽量使用数字型字段

若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

(2)尽可能的使用 varchar 代替 char

变长字段存储空间小,可以节省存储空间。

(3)当索引列大量重复数据时,可以把索引删除掉

比如有一列是性别,几乎只有男、女、未知,这样的索引是无效的。

2,优化查询

3,索引优化

怎么看执行计划(explain),如何理解其中各个字段的含义?

在 select 语句之前增加 explain 关键字,会返回执行计划的信息。

(1)id 列:是 select 语句的序号,MySQL将 select 查询分为简单查询和复杂查询。

(2)select_type列:表示对应行是是简单还是复杂的查询。

(3)table 列:表示 explain 的一行正在访问哪个表。

(4)type 列:最重要的列之一。表示关联类型或访问类型,即 MySQL 决定如何查找表中的行。从最优到最差分别为:system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

(5)possible_keys 列:显示查询可能使用哪些索引来查找。

(6)key 列:这一列显示 mysql 实际采用哪个索引来优化对该表的访问。

(7)key_len 列:显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。

(8)ref 列:这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),func,NULL,字段名。

(9)rows 列:这一列是 mysql 估计要读取并检测的行数,注意这个不是结果集里的行数。

(10)Extra 列:显示额外信息。比如有 Using index、Using where、Using temporary等。

关心过业务系统里面的sql耗时吗?统计过慢查询吗?对慢查询都怎么优化过?

我们平时写Sql时,都要养成用explain分析的习惯。慢查询的统计,运维会定期统计给我们

优化慢查询思路:

索引

聚集索引与非聚集索引的区别

可以按以下四个维度回答:

(1)一个表中只能拥有一个聚集索引,而非聚集索引一个表可以存在多个。

(2)聚集索引,索引中键值的逻辑顺序决定了表中相应行的物理顺序;非聚集索引,索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同。

(3)索引是通过二叉树的数据结构来描述的,我们可以这么理解聚簇索引:索引的叶节点就是数据节点。而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块。

(4)聚集索引:物理存储按照索引排序;非聚集索引:物理存储不按照索引排序;

为什么要用 B+ 树,为什么不用普通二叉树?

可以从几个维度去看这个问题,查询是否够快,效率是否稳定,存储数据多少,以及查找磁盘次数,为什么不是普通二叉树,为什么不是平衡二叉树,为什么不是B树,而偏偏是 B+ 树呢?

(1)为什么不是普通二叉树?

如果二叉树特殊化为一个链表,相当于全表扫描。平衡二叉树相比于二叉查找树来说,查找效率更稳定,总体的查找速度也更快。

(2)为什么不是平衡二叉树呢?

我们知道,在内存比在磁盘的数据,查询效率快得多。如果树这种数据结构作为索引,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说的一个磁盘块,但是平衡二叉树可是每个节点只存储一个键值和数据的,如果是B树,可以存储更多的节点数据,树的高度也会降低,因此读取磁盘的次数就降下来啦,查询效率就快啦。

(3)为什么不是 B 树而是 B+ 树呢?

B+ 树非叶子节点上是不存储数据的,仅存储键值,而B树节点中不仅存储键值,也会存储数据。innodb中页的默认大小是16KB,如果不存储数据,那么就会存储更多的键值,相应的树的阶数(节点的子节点树)就会更大,树就会更矮更胖,如此一来我们查找数据进行磁盘的IO次数有会再次减少,数据查询的效率也会更快。

B+ 树索引的所有数据均存储在叶子节点,而且数据是按照顺序排列的,链表连着的。那么 B+ 树使得范围查找,排序查找,分组查找以及去重查找变得异常简单。

Hash 索引和 B+ 树索引区别是什么?你在设计索引是怎么抉择的?

什么是最左前缀原则?什么是最左匹配原则?

最左前缀原则,就是最左优先,在创建多列索引时,要根据业务需求,where 子句中使用最频繁的一列放在最左边。

当我们创建一个组合索引的时候,如 (a1,a2,a3),相当于创建了(a1)、(a1,a2)和(a1,a2,a3)三个索引,这就是最左匹配原则。

索引不适合哪些场景?

索引有哪些优缺点?

(1) 优点:

(2)缺点:

MySQL 遇到过死锁问题吗,你是如何解决的?

遇到过。我排查死锁的一般步骤是酱紫的:

(1)查看死锁日志 show engine innodb status; (2)找出死锁Sql (3)分析sql加锁情况 (4)模拟死锁案发 (5)分析死锁日志 (6)分析死锁结果

说说数据库的乐观锁和悲观锁是什么以及它们的区别?

(1)悲观锁:

悲观锁她专一且缺乏安全感了,她的心只属于当前事务,每时每刻都担心着它心爱的数据可能被别的事务修改,所以一个事务拥有(获得)悲观锁后,其他任何事务都不能对数据进行修改啦,只能等待锁被释放才可以执行。

(2)乐观锁:

乐观锁的“乐观情绪”体现在,它认为数据的变动不会太频繁。因此,它允许多个事务同时对数据进行变动。

实现方式:乐观锁一般会使用版本号机制或CAS算法实现。

MVCC 熟悉吗,知道它的底层原理?

MVCC (Multiversion Concurrency Control),即多版本并发控制技术。

MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读。

事务

MySQL事务得四大特性以及实现原理

事务的隔离级别有哪些?MySQL的默认隔离级别是什么?

Mysql默认的事务隔离级别是可重复读(Repeatable Read)

什么是幻读,脏读,不可重复读呢?

事务A、B交替执行,事务A被事务B干扰到了,因为事务A读取到事务B未提交的数据,这就是脏读。

在一个事务范围内,两个相同的查询,读取同一条记录,却返回了不同的数据,这就是不可重复读。

事务A查询一个范围的结果集,另一个并发事务B往这个范围中插入/删除了数据,并静悄悄地提交,然后事务A再次查询相同的范围,两次读取得到的结果集不一样了,这就是幻读。

实战

MySQL数据库cpu飙升的话,要怎么处理呢?

排查过程:

(1)使用top 命令观察,确定是mysqld导致还是其他原因。(2)如果是mysqld导致的,show processlist,查看session情况,确定是不是有消耗资源的sql在运行。(3)找出消耗高的 sql,看看执行计划是否准确, 索引是否缺失,数据量是否太大。

处理:

(1)kill 掉这些线程(同时观察 cpu 使用率是否下降), (2)进行相应的调整(比如说加索引、改 sql、改内存参数) (3)重新跑这些 SQL。

其他情况:

也有可能是每个 sql 消耗资源并不多,但是突然之间,有大量的 session 连进来导致 cpu 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等

MYSQL的主从延迟,你怎么解决?

主从复制分了五个步骤进行:(图片来源于网络)

主从同步延迟的原因

一个服务器开放N个链接给客户端来连接的,这样有会有大并发的更新操作, 但是从服务器的里面读取binlog的线程仅有一个,当某个SQL在从服务器上执行的时间稍长 或者由于某个SQL要进行锁表就会导致,主服务器的SQL大量积压,未被同步到从服务器里。这就导致了主从不一致, 也就是主从延迟。

主从同步延迟的解决办法

如果让你做分库与分表的设计,简单说说你会怎么做?

分库分表方案:

常用的分库分表中间件:

分库分表可能遇到的问题

-- End --

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8