本文主要探讨如何利用Combine中Schedulers对任务执行进行管理。假定读者已经了解Combine的基本原理,想要进一步对Combine中任务调度进行详细了解。由于Schedulers与GCD(Grand Dispatch Queue),线程(thread),RunLoop都有关联,所以也需要读者有这方面的基础了解才能更好的读懂下文。
本文将会介绍以下几方面内容:
Scheduler是一个协议(protocol),定义了什么时候(when)和在什么地方(where)执行一个闭包,其中什么地方(where)意味着 runloop,dispatch queue,operator queue,三选一使用哪个;什么时候(when)意味着Combine事件流的虚拟时间,也就是Combine中Publisher,Operator,Subscriber中具体实现的上下文是执行在哪个Scheduler上。
你可能注意到了Scheduler的定义刻意避免了对线程的任何引用,这是因为你的代码具体执行在哪个线程,是由你选择的Scheduler决定的,也就是说Scheduler协议的具体实现(DispatchQueue,OperationQueue都是遵循Scheduler协议的)定义了任务调度,同时你需要注意Scheduler和线程并不是完全的对应关系,指定一个Scheduler后也可能在不同的线程上执行任务。
默认情况下,即不使用任何后续我们将要讲到的scheduler,Combine将会默认使用上游Publisher产生的线程发送到下游示例1
var cancellables = Set<AnyCancellable>()
let intSubject = PassthroughSubject<Int, Never>()
intSubject.sink(receiveValue: { value in
print(value)
print(Thread.current)
}).store(in: &cancellables)
intSubject.send(1)
DispatchQueue.global().async {
intSubject.send(2)
}
let queue = OperationQueue()
queue.maxConcurrentOperationCount = 1
queue.underlyingQueue = DispatchQueue(label: "com.donnywals.queue")
queue.addOperation {
intSubject.send(3)
}
输出
1
<NSThread: 0x600003b80780>{number = 1, name = main}
2
<NSThread: 0x600003b99300>{number = 6, name = (null)}
3
<NSThread: 0x600003bb2080>{number = 4, name = (null)}
sink的receiveValue被三次调用,每次被调用在不同线程,.send(1)
是在主线程发出的,此时sink输出也是在主线程,而send(2)
和send(3)
都是在子线程发出,则对应sink收到也是在子线程
我们经常需要在后台运行一些消耗资源的操作,这样当用户在界面上操作时,能够避免阻塞主线线程,不影响用户操作。Combine中提供了Schedulers对任务执行进行切换,主要通过两个操作符:subscribe(on:)
和receive(on:)
receive(on:)影响其所在位置下游的scheduler,即其后面的操作符是影响范围示例2
publisher
.operatorA
.receive(on:)
.operatorB
.sink
receive(on:)插在两个OperatorA,OperatorB之间,会影响OperatorB,影响sink函数,不会影响OperatorA,所以是影响其所在位置下游的scheduler
subscribe(on:)稍微复杂一些,如果你了解Comebine的Backpressure机制,会记得遵循Publisher协议需要实现receive
方法,遵循Subscription协议需要实现request
,cancel
方法,subscribe(on:)
就是用来控制上面提到的这些方法的切换调度;一般来说,subscribe(on:)
会影响一个Combine异步事件链条上的Publisher和Operator,但是不是一定,它取决于实现Publisher协议对象的具体内部实现,如果其内部实现指定了线程,将不会遵循外部subscribe(on:)
的设置,反之,如果没有指定一般会使用。
上面的描述可能还是让你一头雾水,下面将会使用具体的代码实例解释。
我们将Publisher分成两类进行分析,一类是自定义实现的Publisher,另一类是系统提供的Publisher。
完整示例3
//先创建一个ComputationSubscription(Subscription)和ExpensiveComputation(Publisher)
final class ComputationSubscription<Output>: Subscription {
private let duration: TimeInterval
private let sendCompletion: () -> Void
private let sendValue: (Output) -> Subscribers.Demand
private let finalValue: Output
private var cancelled = false
init(duration: TimeInterval, sendCompletion: @escaping () -> Void, sendValue: @escaping (Output) -> Subscribers.Demand, finalValue: Output) {
self.duration = duration
self.finalValue = finalValue
self.sendCompletion = sendCompletion
self.sendValue = sendValue
}
func request(_ demand: Subscribers.Demand) {
if !cancelled {
print("Beginning expensive computation on thread \(Thread.current.number)")
}
Thread.sleep(until: Date(timeIntervalSinceNow: duration))
if !cancelled {
print("Completed expensive computation on thread \(Thread.current.number)")
_ = self.sendValue(self.finalValue)
self.sendCompletion()
}
}
func cancel() {
cancelled = true
}
}
extension Publishers {
public struct ExpensiveComputation: Publisher {
public typealias Output = String
public typealias Failure = Never
public let duration: TimeInterval
public init(duration: TimeInterval) {
self.duration = duration
}
public func receive<S>(subscriber: S) where S : Subscriber, Failure == S.Failure, Output == S.Input {
Swift.print("ExpensiveComputation subscriber received on thread \(Thread.current.number)")
let subscription = ComputationSubscription(duration: duration,
sendCompletion: { subscriber.receive(completion: .finished) },
sendValue: { subscriber.receive($0) },
finalValue: "Computation complete")
subscriber.receive(subscription: subscription)
}
}
}
//--------------------------------------
//继续使用上面的代码,完成一个完整的订阅流程
// 1
let computationPublisher = Publishers.ExpensiveComputation(duration: 3)
// 2
let queue = DispatchQueue(label: "serial queue")
let currentThread = Thread.current.number
print("Start computation publisher on thread \(currentThread)")
let subscription = computationPublisher
.subscribe(on: queue) // 3
.map({ (val) -> String in
// print(val)
//4
print("Thread.current.number=\(Thread.current.number)")
return val
})
.receive(on: DispatchQueue.main) //5
.sink { value in
let thread = Thread.current.number
print("Received computation result on thread \(thread): '\(value)'")
}
输出
Start computation publisher on thread 1
ExpensiveComputation subscriber received on thread 6
Beginning expensive computation on thread 6
Completed expensive computation on thread 6
Thread.current.number=6
Received computation result on thread 1: 'Computation complete'
subscribe(on:)
的使用影响Publisher的线程使用,Operator也是一种Publisher,map中操作也是在子线程,.subscribe(on:)
的位置在map前或者后面,没有区别receive(on:)
用于控制其位置下游的scheduler,一般使用在sink前,用于Subscirber侧的线程控制,即sink中输出值的运行线程,但不仅仅限于此,如果receive(on:)
位置移动到map的前面,也会影响map的线程下面修改一下代码,调整receive(on:)
位置,移动到subscribe(on:)
后面,map前面
示例3-局部修改
// 1
let computationPublisher = Publishers.ExpensiveComputation(duration: 0)
// 2
let queue = DispatchQueue(label: "serial queue")
// 3
let currentThread = Thread.current.number
print("Start computation publisher on thread \(currentThread)")
let subscription = computationPublisher
.subscribe(on: queue)
.receive(on: DispatchQueue.main)
.map({ (val) -> String in
// print(val)
print("Thread.current.number=\(Thread.current.number)")
return val
})
.sink { value in
let thread = Thread.current.number
print("Received computation result on thread \(thread): '\(value)'")
}
输出
Start computation publisher on thread 1
ExpensiveComputation subscriber received on thread 6
Beginning expensive computation on thread 6
Completed expensive computation on thread 6
Thread.current.number=1
Received computation result on thread 1: 'Computation complete'
注意:map切到主线程执行,publisher仍然在子线程执行,receive(on:)
成功影响其下游的scheduler,map位于其下游,所以切到主线程,而Publisher被subscribe(on:)
控制还位于子线程
示例3-局部修改2
public struct ExpensiveComputation: Publisher {
public typealias Output = String
public typealias Failure = Never
public let duration: TimeInterval
public init(duration: TimeInterval) {
self.duration = duration
}
public func receive<S>(subscriber: S) where S : Subscriber, Failure == S.Failure, Output == S.Input {
DispatchQueue.main.async { //note
Swift.print("ExpensiveComputation subscriber received on thread \(Thread.current.number)")
let subscription = ComputationSubscription(duration: duration,
sendCompletion: { subscriber.receive(completion: .finished) },
sendValue: { subscriber.receive($0) },
finalValue: "Computation complete")
subscriber.receive(subscription: subscription)
}
}
}
这段代码唯一一处修改是Publisher的实现ExpensiveComputation中,receive
方法的内部实现,指定了运行在主线程。
此时再执行下面代码,注意subscribe
和receive
位置恢复到初始状态
let subscription = computationPublisher
.subscribe(on: queue) // 3
.map({ (val) -> String in
// print(val)
//4
print("Thread.current.number=\(Thread.current.number)")
return val
})
.receive(on: DispatchQueue.main) //5
.sink { value in
let thread = Thread.current.number
print("Received computation result on thread \(thread): '\(value)'")
}
输出
Start computation publisher on thread 1
ExpensiveComputation subscriber received on thread 1
Beginning expensive computation on thread 6
Completed expensive computation on thread 6
Thread.current.number=1
Received computation result on thread 1: 'Computation complete'
此时,map不再执行在subscribe指定的子线程,而是主线程,这是Publisher内部实现决定的;
下面继续介绍系统提供的Publisher,主要介绍PassthroughSubject和CurrentValueSubject;这里我们会频繁使用Thread.current
这个系统提供的方法,打印线程信息,比如
<NSThread: 0x600001a6c900>{number = 1, name = main}
就代表当前在线程1,线程的名字是main,也就是主线程,在playground中主线程number等于1,
示例4
let intSubject = PassthroughSubject<Int, Never>()
intSubject
.subscribe(on: DispatchQueue.global())
.sink(receiveValue: { value in
print(Thread.current)
})
.store(in: &cancellables)
intSubject.send(1)
intSubject.send(2)
intSubject.send(3)
输出
<NSThread: 0x600001a6c900>{number = 1, name = main}
<NSThread: 0x600001a6c900>{number = 1, name = main}
<NSThread: 0x600001a6c900>{number = 1, name = main}
subscribe切到子线程,但是sink并没有在子线程输出,而是仍然在主线程,开头"Combine的默认调度机制"小节已经证实是按subject.send所在线程,不受subscribe(on:)
影响
示例5
let intSubject = PassthroughSubject<Int, Never>()
intSubject
.map({ (num) -> Int in
print("map:\(Thread.current)")
return num + 1
})
.subscribe(on: DispatchQueue.global())
.sink(receiveValue: { value in
print("sink:\(Thread.current)")
})
.store(in: &cancellables)
// sleep(5)
intSubject.send(1)
intSubject.send(2)
intSubject.send(3)
如果运行在模拟器,没有输出,这是因为,由于subscribe切换执行到子线程异步执行,代码马上继续执行,当subscription建立前,send已经发出,所以没有任何输出;
如果把sleep(5)
的注释打开,由于延迟了足够的时间才执行send,这时sink已经执行完成,所以会有输出;
运行在Playground,输出
map:<NSThread: 0x600001f54440>{number = 1, name = main}
sink:<NSThread: 0x600001f54440>{number = 1, name = main}
map:<NSThread: 0x600001f54440>{number = 1, name = main}
sink:<NSThread: 0x600001f54440>{number = 1, name = main}
map:<NSThread: 0x600001f54440>{number = 1, name = main}
sink:<NSThread: 0x600001f54440>{number = 1, name = main}
发现PassthroughSubject不受subscribe(on:)
影响,取决于send所在线程
示例6
let intSubject = CurrentValueSubject<Int, Never>(0)
intSubject
.subscribe(on: DispatchQueue.global())
.map({ (num) -> Int in
print("num=\(num),map:\(Thread.current)")
return num + 1
})
.receive(on: DispatchQueue.global())
.sink(receiveValue: { value in
print("num=\(value),sink:\(Thread.current)")
})
.store(in: &cancellables)
sleep(5)
intSubject.send(1)
intSubject.send(2)
输出
num=0,map:<NSThread: 0x600001e48180>{number = 3, name = (null)}
num=1,sink:<NSThread: 0x600001e48180>{number = 3, name = (null)}
num=1,map:<NSThread: 0x600001e20900>{number = 1, name = main}
num=2,map:<NSThread: 0x600001e20900>{number = 1, name = main}
num=2,sink:<NSThread: 0x600001e2d340>{number = 6, name = (null)}
num=3,sink:<NSThread: 0x600001e48180>{number = 3, name = (null)}
重组一下,按map和sink配对输出,便于对照
num=0,map:<NSThread: 0x600001e48180>{number = 3, name = (null)}
num=1,sink:<NSThread: 0x600001e48180>{number = 3, name = (null)}
num=1,map:<NSThread: 0x600001e20900>{number = 1, name = main}
num=2,sink:<NSThread: 0x600001e2d340>{number = 6, name = (null)}
num=2,map:<NSThread: 0x600001e20900>{number = 1, name = main}
num=3,sink:<NSThread: 0x600001e48180>{number = 3, name = (null)}
发现CurrentValueSubject,初始值0按subscribe(on:)
执行调度,后续map所在线程send按发出线程,sink按receive(on:)
指定的sechduler
苹果提供了Scheduler协议的几个具体实现
schedule(after:)
),使用这个Scheduler将会遇到致命错误。下面针对每一种类型介绍如下:
let source = Timer
.publish(every: 1.0, on: .main, in: .common)
.autoconnect()
.scan(0) { counter, _ in counter + 1 }
source
//1
.map{ value -> Int in
print("1:\(Thread.current)")
return value
}
// 2
.receive(on: ImmediateScheduler.shared)
// 3
.map{ value -> Int in
print("2:\(Thread.current)")
return value
}
.eraseToAnyPublisher()
.sink { _ in
//print(out)
}
.store(in: &subscription)
部分输出摘录
1:<NSThread: 0x600000c2c2c0>{number = 1, name = main}
2:<NSThread: 0x600000c2c2c0>{number = 1, name = main}
1:<NSThread: 0x600000c2c2c0>{number = 1, name = main}
2:<NSThread: 0x600000c2c2c0>{number = 1, name = main}
这个例子中,为了明确知道Scheduler调度后,具体在哪个线程执行,在注释1和3处,加入了两个map,他们的闭包内部没有任何实际意义,只是用来打印线程,直接返回上游的结果;
由于ImmediateScheduler在当前线程执行,playground的main thread 是1,所以都在主线程执行
再上面代码上做一点修改代码,在注释1前面增加,receive(on: DispatchQueue.global())
source
//4
.receive(on: DispatchQueue.global())
//1
.map{ value -> Int in
print("1:\(Thread.current)")
return value
}
// 2
.receive(on: ImmediateScheduler.shared)
// 3
.map{ value -> Int in
print("2:\(Thread.current)")
return value
}
.eraseToAnyPublisher()
.sink { _ in
//print(out)
}
.store(in: &subscription)
输出
1:<NSThread: 0x6000018393c0>{number = 6, name = (null)}
2:<NSThread: 0x6000018393c0>{number = 6, name = (null)}
1:<NSThread: 0x600001829300>{number = 3, name = (null)}
2:<NSThread: 0x600001829300>{number = 3, name = (null)}
此时,Publisher不在运行在主线程,而是在global queue
RunLoop产生早于DispatchQueue,是在线程级别管理输入资源的方式,我们的应用程序的主线程默认有一个关联的Runloop,你也可以通过调用RunLoop.current获得Fundation框架提供的当前线程;现在Runloop使用场景更少,DispatchQueue更常用,但是特定场景下Runloop还是很有用,比如Timer执行在RunLoop上;
为了方便对比,我们继续利用ImmediateScheduler小节提供的代码示例,再其基础上做修改
var subscription = Set<AnyCancellable>()
let source = Timer
.publish(every: 1.0, on: .main, in: .common)
.autoconnect()
.scan(0) { counter, _ in counter + 1 }
source
//4
.receive(on: DispatchQueue.global())
//1
.map{ value -> Int in
print("1:\(Thread.current)")
return value
}
// 2
.receive(on: RunLoop.current)
// 3
.map{ value -> Int in
print("2:\(Thread.current)")
return value
}
.eraseToAnyPublisher()
.sink { _ in
//print(out)
}
.store(in: &subscription)
输出
1:<NSThread: 0x6000024e8680>{number = 5, name = (null)}
2:<NSThread: 0x6000024c8300>{number = 1, name = main}
1:<NSThread: 0x6000024e8680>{number = 5, name = (null)}
2:<NSThread: 0x6000024c8300>{number = 1, name = main}
这段代码注释2处,使用RunLoop.current
代替ImmediateScheduler.shared
,需要注意,RunLoop.current
是什么?它是与在调用时处于当前状态的线程相关联的RunLoop。由于从主线程调用程序,因此RunLoop.current
是主线程的RunLoop。
DispatchQueue遵循scheduler协议,通过向系统管理的调度队列提交任务,可以在多核硬件上并发执行代码;DispatchQueue可以是串行(默认)或并行;
注意:在使用subscribe(on:)、receive(on:)或任何其他接受调度程序参数的操作符时,绝不应该假定调度程序的线程每次都是相同的。
var subscriptions = Set<AnyCancellable>()
let serialQueue = DispatchQueue(label: "Serial queue")
let sourceQueue = DispatchQueue.main
// 1
let source = PassthroughSubject<Void, Never>()
// 2
let subscription = sourceQueue.schedule(after: sourceQueue.now,
interval: .seconds(1)) {
source.send()
}
source
.map{ _ in
print("1:\(Thread.current)")
}
.receive(on: serialQueue,options: DispatchQueue.SchedulerOptions(qos: .userInteractive))
.map{ _ in
print("2:\(Thread.current)")
}
.eraseToAnyPublisher()
.sink(receiveValue: { _ in
})
.store(in: &subscriptions)
输出
1:<NSThread: 0x600002490740>{number = 1, name = main}
2:<NSThread: 0x600002486340>{number = 6, name = (null)}
1:<NSThread: 0x600002490740>{number = 1, name = main}
2:<NSThread: 0x6000024a4780>{number = 4, name = (null)}
1:<NSThread: 0x600002490740>{number = 1, name = main}
2:<NSThread: 0x600002486340>{number = 6, name = (null)}
1:<NSThread: 0x600002490740>{number = 1, name = main}
2:<NSThread: 0x6000024a4780>{number = 4, name = (null)}
从输出结果可以看到DispatchQueue无法保证执行在哪个线程上,source发出后是指定在main,当切到serialQueue后,执行在一个串行队列serialQueue上,但是不能确定保持不变,这个例子中一会是6,一会是4;另外,你也会注意到DispatchQueue是唯一有option可设置的,有两种:
如果改动一下上面代码,把sourceQueue从DispatchQueue.main改成serialQueue,即前后切换的两个queue保持一致
let sourceQueue = serialQueue //DispatchQueue.main
输出
1:<NSThread: 0x60000308c080>{number = 3, name = (null)}
2:<NSThread: 0x60000308c080>{number = 3, name = (null)}
1:<NSThread: 0x600003085300>{number = 4, name = (null)}
2:<NSThread: 0x600003085300>{number = 4, name = (null)}
线程number就会一直保持不变,即一直在一个线程上执行
let queue = OperationQueue()
let subscription = (1...10).publisher
.receive(on: queue)
.sink { value in
print("Received \(value)")
}
输出
Received 1
thread = <NSThread: 0x600002af80c0>{number = 3, name = (null)}
Received 2
thread = <NSThread: 0x600002ac4f80>{number = 5, name = (null)}
Received 3
thread = <NSThread: 0x600002ac5480>{number = 7, name = (null)}
Received 7
thread = <NSThread: 0x600002ac4680>{number = 8, name = (null)}
Received 6
thread = <NSThread: 0x600002af4780>{number = 9, name = (null)}
OperationQueue在底层使用OperationQueue执行任务,所以不保证具体执行在哪个线程;另外OperationQueue的maxConcurrentOperationCount属性也很明确的可以并发执行,所以输出结果的顺序并不保证;
简单修改一下,增加
queue.maxConcurrentOperationCount = 1
由于设置了最大并行操作计数等于1,所以等价串行队列,此时结果就会按顺序输出
Received 1 on thread 3
Received 2 on thread 3
Received 3 on thread 3
Received 4 on thread 3
Received 5 on thread 4
Received 6 on thread 3
Received 7 on thread 3
Received 8 on thread 3
Received 9 on thread 3
Received 10 on thread 3
本篇中使用了大量代码讲解Combine中Schedulers的运行机制,当你需要执行一些耗时或资源消耗型操作,就需要考虑适当使用Schedulers进行合理的任务调度,避免阻塞主线程;通过定义Scheduler这个新的概念,提醒使用者调度的核心是合理的选择调度逻辑(主线程或子线程),但是不能具体指定在哪个线程;同时,苹果提供了Scheduler协议的多种具体实现,一般来说,更推荐使用DispatchQueue。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8