一文了解 etcd watch 实现

319次阅读  |  发布于3年以前

前几天在群里讨论服务发现,最简单的模型使用 etcd watch 来实现消息订阅,我司也是这方案。但从可运维及稳定性考虑,etcd 并不是最佳选择,好多小伙伴所在的公司仍然采用 mysql 的推拉结合方式。这让我想起来,很多人面试问如何实现延迟队列,花里胡哨一大堆解决方案,可能公司最后还是使用 mysql 轮询 ...

扯远了,来看一下 etcd 如何实现的 watch, 原理不算复杂,但要处理很多场景,比如不同 client 消费速度不同的问题,处理如何高效匹配 range 范围等等。下面是整体架构图

经典使用

先看一下经典的使用 case, 代码做了简化,网上有很多人说 watch 丢消息,基本就是姿势错误导致的。

func watch(ctx context.Context, revision int64) {
 ......
 for {
  rch := watcher.Watch(ctx, "/somepath", clientv3.WithRev(revision), clientv3.WithPrefix())
  for wresp := range rch {
   // meet compacted error, use the compact revision.
   if wresp.CompactRevision != 0 {
    logging.Warn("required revision has been compacted, use the compact revision:%d, required-revision:%d", wresp.CompactRevision, revision)
    revision = wresp.CompactRevision
    break
   }
   if wresp.Canceled {
    logging.Warn("watcher is canceled with revision: %d error: %v", revision, wresp.Err())
    return
   }

   for _, ev := range wresp.Events {
    process(ev)
   }
   revision = wresp.Header.Revision
  }

  select {
  case <-ctx.Done():
   // server closed, return
   return
  default:
  }
 }
 ......
}

上面代码是经典的使用方式,算是标准实践,要注意处理 compact revision, 处理 ctx 超时,以及上层的 rewatch. 同时 watch 时可以指定 option, 接受历史版本数据,订阅一个范围前辍等等

服务初始化

etcd 启动时会注册 WatchServer[1], pb.WatchServer 用于处理 watch 请求

// NewWatchServer returns a new watch server.
func NewWatchServer(s *etcdserver.EtcdServer) pb.WatchServer {
 return &watchServer{
  lg: s.Cfg.Logger,
  clusterID: int64(s.Cluster().ID()),
  memberID:  int64(s.ID()),
  maxRequestBytes: int(s.Cfg.MaxRequestBytes + grpcOverheadBytes),
  sg:        s,
  watchable: s.Watchable(),
  ag:        s,
 }
}

这里面关注 watchable 就行,是一个接口,实际上实现是 mvcc.watchableStore

接收 watch 请求

func (ws *watchServer) Watch(stream pb.Watch_WatchServer) (err error) {
 sws := serverWatchStream{
  lg: ws.lg,

  clusterID: ws.clusterID,
  memberID:  ws.memberID,

  maxRequestBytes: ws.maxRequestBytes,

  sg:        ws.sg,
  watchable: ws.watchable,
  ag:        ws.ag,

  gRPCStream:  stream,
  watchStream: ws.watchable.NewWatchStream(),
  // chan for sending control response like watcher created and canceled.
  ctrlStream: make(chan *pb.WatchResponse, ctrlStreamBufLen),

  progress: make(map[mvcc.WatchID]bool),
  prevKV:   make(map[mvcc.WatchID]bool),
  fragment: make(map[mvcc.WatchID]bool),

  closec: make(chan struct{}),
 }

 sws.wg.Add(1)
 go func() {
  sws.sendLoop()
  sws.wg.Done()
 }()

 errc := make(chan error, 1)
 // Ideally recvLoop would also use sws.wg to signal its completion
 // but when stream.Context().Done() is closed, the stream's recv
 // may continue to block since it uses a different context, leading to
 // deadlock when calling sws.close().
 go func() {
  if rerr := sws.recvLoop(); rerr != nil {
   if isClientCtxErr(stream.Context().Err(), rerr) {
    if sws.lg != nil {
     sws.lg.Debug("failed to receive watch request from gRPC stream", zap.Error(rerr))
    } else {
     plog.Debugf("failed to receive watch request from gRPC stream (%q)", rerr.Error())
    }
   } else {
    if sws.lg != nil {
     sws.lg.Warn("failed to receive watch request from gRPC stream", zap.Error(rerr))
    } else {
     plog.Warningf("failed to receive watch request from gRPC stream (%q)", rerr.Error())
    }
    streamFailures.WithLabelValues("receive", "watch").Inc()
   }
   errc <- rerr
  }
 }()

 select {
 case err = <-errc:
  close(sws.ctrlStream)

 case <-stream.Context().Done():
  err = stream.Context().Err()
  // the only server-side cancellation is noleader for now.
  if err == context.Canceled {
   err = rpctypes.ErrGRPCNoLeader
  }
 }

 sws.close()
 return err
}
  1. 每一个 watch 流都创建一个 serverWatchStream 结构体
  2. 开启两个 goroutine, sendLoop 用于发送 watch 消息到流中,recvLoop 接受请求
  3. select 阻塞直到流关闭,或是超时退出。

1. 接收 watch 请求 recvLoop

func (sws *serverWatchStream) recvLoop() error {
 for {
  req, err := sws.gRPCStream.Recv()
    ......
  switch uv := req.RequestUnion.(type) {
  case *pb.WatchRequest_CreateRequest:
   creq := uv.CreateRequest
   if len(creq.Key) == 0 {
    // \x00 is the smallest key
    creq.Key = []byte{0}
   }
   if len(creq.RangeEnd) == 0 {
    // force nil since watchstream.Watch distinguishes
    // between nil and []byte{} for single key / >=
    creq.RangeEnd = nil
   }
   if len(creq.RangeEnd) == 1 && creq.RangeEnd[0] == 0 {
    // support  >= key queries
    creq.RangeEnd = []byte{}
   }

   if !sws.isWatchPermitted(creq) {
    wr := &pb.WatchResponse{
     Header:       sws.newResponseHeader(sws.watchStream.Rev()),
     WatchId:      creq.WatchId,
     Canceled:     true,
     Created:      true,
     CancelReason: rpctypes.ErrGRPCPermissionDenied.Error(),
    }

    select {
    case sws.ctrlStream <- wr:
    case <-sws.closec:
    }
    return nil
   }

   filters := FiltersFromRequest(creq)

   wsrev := sws.watchStream.Rev()
   rev := creq.StartRevision
   if rev == 0 {
    rev = wsrev + 1
   }
   id, err := sws.watchStream.Watch(mvcc.WatchID(creq.WatchId), creq.Key, creq.RangeEnd, rev, filters...)
   if err == nil {
    sws.mu.Lock()
    if creq.ProgressNotify {
     sws.progress[id] = true
    }
    if creq.PrevKv {
     sws.prevKV[id] = true
    }
    if creq.Fragment {
     sws.fragment[id] = true
    }
    sws.mu.Unlock()
   }
   wr := &pb.WatchResponse{
    Header:   sws.newResponseHeader(wsrev),
    WatchId:  int64(id),
    Created:  true,
    Canceled: err != nil,
   }
   if err != nil {
    wr.CancelReason = err.Error()
   }
   select {
   case sws.ctrlStream <- wr:
   case <-sws.closec:
    return nil
   }

  case *pb.WatchRequest_CancelRequest:
   if uv.CancelRequest != nil {
    id := uv.CancelRequest.WatchId
    err := sws.watchStream.Cancel(mvcc.WatchID(id))
    if err == nil {
     sws.ctrlStream <- &pb.WatchResponse{
      Header:   sws.newResponseHeader(sws.watchStream.Rev()),
      WatchId:  id,
      Canceled: true,
     }
     sws.mu.Lock()
     delete(sws.progress, mvcc.WatchID(id))
     delete(sws.prevKV, mvcc.WatchID(id))
     delete(sws.fragment, mvcc.WatchID(id))
     sws.mu.Unlock()
    }
   }
  case *pb.WatchRequest_ProgressRequest:
   if uv.ProgressRequest != nil {
    sws.ctrlStream <- &pb.WatchResponse{
     Header:  sws.newResponseHeader(sws.watchStream.Rev()),
     WatchId: -1, // response is not associated with any WatchId and will be broadcast to all watch channels
    }
   }
  default:
   // we probably should not shutdown the entire stream when
   // receive an valid command.
   // so just do nothing instead.
   continue
  }
 }
}

recvLoopgRPCStream 读出 req, 然后分别处理类型为 CreateRequest, CancelRequest, ProgressRequest 的情况

  1. CreateRequest: 监听的可能是一个范围,所以构建 key 和 RangeEnd. 处理 StartRevision, 如果为 0, 那么使用当前系统最新的 Rev+1. 调用 mvcc 层的 watchStream.Watch, 返回一个 watchid, 将这个 id 写到 ctrlStream 返回给 client
  2. CancelRequest: 还是调用 mvcc 层的 watchableStore.Cancel 取消订阅,然后清除状态信息
  3. ProgressRequest: broadcast 广播当前系统的 Rev 版本

2. 接收 watch 请求 sendLoop

func (sws *serverWatchStream) sendLoop() {
 // watch ids that are currently active
 ids := make(map[mvcc.WatchID]struct{})
 // watch responses pending on a watch id creation message
 pending := make(map[mvcc.WatchID][]*pb.WatchResponse)

 interval := GetProgressReportInterval()
 progressTicker := time.NewTicker(interval)

 defer func() {
  progressTicker.Stop()
  // drain the chan to clean up pending events
  for ws := range sws.watchStream.Chan() {
   mvcc.ReportEventReceived(len(ws.Events))
  }
  for _, wrs := range pending {
   for _, ws := range wrs {
    mvcc.ReportEventReceived(len(ws.Events))
   }
  }
 }()

 for {
  select {
  case wresp, ok := <-sws.watchStream.Chan():
   if !ok {
    return
   }

   // TODO: evs is []mvccpb.Event type
   // either return []*mvccpb.Event from the mvcc package
   // or define protocol buffer with []mvccpb.Event.
   evs := wresp.Events
   events := make([]*mvccpb.Event, len(evs))
   sws.mu.RLock()
   needPrevKV := sws.prevKV[wresp.WatchID]
   sws.mu.RUnlock()
   for i := range evs {
    events[i] = &evs[i]
    if needPrevKV {
     opt := mvcc.RangeOptions{Rev: evs[i].Kv.ModRevision - 1}
     r, err := sws.watchable.Range(evs[i].Kv.Key, nil, opt)
     if err == nil && len(r.KVs) != 0 {
      events[i].PrevKv = &(r.KVs[0])
     }
    }
   }

   canceled := wresp.CompactRevision != 0
   wr := &pb.WatchResponse{
    Header:          sws.newResponseHeader(wresp.Revision),
    WatchId:         int64(wresp.WatchID),
    Events:          events,
    CompactRevision: wresp.CompactRevision,
    Canceled:        canceled,
   }

   if _, okID := ids[wresp.WatchID]; !okID {
    // buffer if id not yet announced
    wrs := append(pending[wresp.WatchID], wr)
    pending[wresp.WatchID] = wrs
    continue
   }

   mvcc.ReportEventReceived(len(evs))

   sws.mu.RLock()
   fragmented, ok := sws.fragment[wresp.WatchID]
   sws.mu.RUnlock()

   var serr error
   if !fragmented && !ok {
    serr = sws.gRPCStream.Send(wr)
   } else {
    serr = sendFragments(wr, sws.maxRequestBytes, sws.gRPCStream.Send)
   }

   ......
   sws.mu.Lock()
   if len(evs) > 0 && sws.progress[wresp.WatchID] {
    // elide next progress update if sent a key update
    sws.progress[wresp.WatchID] = false
   }
   sws.mu.Unlock()

  case c, ok := <-sws.ctrlStream:
   if !ok {
    return
   }

   if err := sws.gRPCStream.Send(c); err != nil {
    ......
   }

   // track id creation
   wid := mvcc.WatchID(c.WatchId)
   if c.Canceled {
    delete(ids, wid)
    continue
   }
   if c.Created {
    // flush buffered events
    ids[wid] = struct{}{}
    for _, v := range pending[wid] {
     mvcc.ReportEventReceived(len(v.Events))
     if err := sws.gRPCStream.Send(v); err != nil {
      ......
     }
    }
    delete(pending, wid)
   }

  case <-progressTicker.C:
   sws.mu.Lock()
   for id, ok := range sws.progress {
    if ok {
     sws.watchStream.RequestProgress(id)
    }
    sws.progress[id] = true
   }
   sws.mu.Unlock()

  case <-sws.closec:
   return
  }
 }
}

在 watchid 生成前,可能就有消息触发了,此时还没有 id, 所以消息会堆积到 pending 中。整个函数主要从 mvcc.watchStream.Chan() 中处理读取订阅的消息,处理 ctrlStream 控制消息和处理 progressTicker

  1. Chan(): 如果 needPrevKV, 需要填充。watchid 不存在的话,暂时移到 pending 队列中。Fragment 查看是否需要分包,这里阈值是 1.5M, 不需要的话直接调用 sws.gRPCStream.Send 发送即可。如果有数据发送的情况,sws.progress[wresp.WatchID] 置为 false, 不用发进度消息
  2. ctrlStream: 读取控制消息,这里只要是获取 watchid, 然后发送堆积的 pending 消息
  3. progressTicker: 定期调用 RequestProgress 生成进度消息,把当前 Rev 发给 client

MVCC watch

这一块主要是看 mvcc.watchStream, 看下 Watch 如何实现

// Watch creates a new watcher in the stream and returns its WatchID.
func (ws *watchStream) Watch(id WatchID, key, end []byte, startRev int64, fcs ...FilterFunc) (WatchID, error) {
 // prevent wrong range where key >= end lexicographically
 // watch request with 'WithFromKey' has empty-byte range end
 if len(end) != 0 && bytes.Compare(key, end) != -1 {
  return -1, ErrEmptyWatcherRange
 }

 ws.mu.Lock()
 defer ws.mu.Unlock()
 if ws.closed {
  return -1, ErrEmptyWatcherRange
 }

 if id == AutoWatchID {
  for ws.watchers[ws.nextID] != nil {
   ws.nextID++
  }
  id = ws.nextID
  ws.nextID++
 } else if _, ok := ws.watchers[id]; ok {
  return -1, ErrWatcherDuplicateID
 }

 w, c := ws.watchable.watch(key, end, startRev, id, ws.ch, fcs...)

 ws.cancels[id] = c
 ws.watchers[id] = w
 return id, nil
}

主要是用来生成 watchid, 自增就可以了。

func (s *watchableStore) watch(key, end []byte, startRev int64, id WatchID, ch chan<- WatchResponse, fcs ...FilterFunc) (*watcher, cancelFunc) {
 wa := &watcher{
  key:    key,
  end:    end,
  minRev: startRev,
  id:     id,
  ch:     ch,
  fcs:    fcs,
 }

 s.mu.Lock()
 s.revMu.RLock()
 synced := startRev > s.store.currentRev || startRev == 0
 if synced {
  wa.minRev = s.store.currentRev + 1
  if startRev > wa.minRev {
   wa.minRev = startRev
  }
 }
 if synced {
  s.synced.add(wa)
 } else {
  slowWatcherGauge.Inc()
  s.unsynced.add(wa)
 }
 s.revMu.RUnlock()
 s.mu.Unlock()

 watcherGauge.Inc()

 return wa, func() { s.cancelWatcher(wa) }
}

watchableStore 一共有三个 group: synced, unsynced 与 victims, 当 client watch 时是从历史记录开始的,也就是说此时有一堆消息待发送给 client, 那么将 watcher 结构体扔到 unsynced 组中,否则扔到 synced 组中。为什么这么做呢?因为消息处理有快慢,后面具体代码再讲,只要记住 watcher 会在这三个组中流转即可,当然理想情况一直待在 synced 组中

func newWatchableStore(lg *zap.Logger, b backend.Backend, le lease.Lessor, ig ConsistentIndexGetter, cfg StoreConfig) *watchableStore {
 s := &watchableStore{
  store:    NewStore(lg, b, le, ig, cfg),
  victimc:  make(chan struct{}, 1),
  unsynced: newWatcherGroup(),
  synced:   newWatcherGroup(),
  stopc:    make(chan struct{}),
 }
 s.store.ReadView = &readView{s}
 s.store.WriteView = &writeView{s}
 if s.le != nil {
  // use this store as the deleter so revokes trigger watch events
  s.le.SetRangeDeleter(func() lease.TxnDelete { return s.Write(traceutil.TODO()) })
 }
 s.wg.Add(2)
 go s.syncWatchersLoop()
 go s.syncVictimsLoop()
 return s
}

newWatchableStore 时,会生成两个异步 goroutine, syncWatchersLoop 用于将 unsynced 的 watcher 变成 synced watcher, syncVictimsLoop 用于将 victims 的消息尽可能的发送出。

MVCC 消息生成

底层 Txn 用 watchableStoreTxnWrite 封装了一下,在调用 End 提交事务前,调用 notify 将变更的消息发送出去。

func (tw *watchableStoreTxnWrite) End() {
 changes := tw.Changes()
 if len(changes) == 0 {
  tw.TxnWrite.End()
  return
 }

 rev := tw.Rev() + 1
 evs := make([]mvccpb.Event, len(changes))
 for i, change := range changes {
  evs[i].Kv = &changes[i]
  if change.CreateRevision == 0 {
   evs[i].Type = mvccpb.DELETE
   evs[i].Kv.ModRevision = rev
  } else {
   evs[i].Type = mvccpb.PUT
  }
 }

 // end write txn under watchable store lock so the updates are visible
 // when asynchronous event posting checks the current store revision
 tw.s.mu.Lock()
 tw.s.notify(rev, evs)
 tw.TxnWrite.End()
 tw.s.mu.Unlock()
}

遍历 changes, 判断类型 mvccpb.DELETE 或是 mvccpb.PUT, 然后封装成 envs 事件,调用 tw.s.notify 发送出去后提交。

// notify notifies the fact that given event at the given rev just happened to
// watchers that watch on the key of the event.
func (s *watchableStore) notify(rev int64, evs []mvccpb.Event) {
 var victim watcherBatch
 for w, eb := range newWatcherBatch(&s.synced, evs) {
  if eb.revs != 1 {
   if s.store != nil && s.store.lg != nil {
    s.store.lg.Panic(
     "unexpected multiple revisions in watch notification",
     zap.Int("number-of-revisions", eb.revs),
    )
   } else {
    plog.Panicf("unexpected multiple revisions in notification")
   }
  }
  if w.send(WatchResponse{WatchID: w.id, Events: eb.evs, Revision: rev}) {
   pendingEventsGauge.Add(float64(len(eb.evs)))
  } else {
   // move slow watcher to victims
   w.minRev = rev + 1
   if victim == nil {
    victim = make(watcherBatch)
   }
   w.victim = true
   victim[w] = eb
   s.synced.delete(w)
   slowWatcherGauge.Inc()
  }
 }
 s.addVictim(victim)
}

newWatcherBatch 用于从 synced 组中获取待发送的 watcher, 然后调用 w.send 发送到 channel 里面,如果 channel 满了,那么说明发送不出去,将 watcher 从 synced 组中删除,并添加到 victim 组中,等后后续异步 goroutine syncVictimsLoop 处理。我们看一下,newWatcherBatch 实现

func newWatcherBatch(wg *watcherGroup, evs []mvccpb.Event) watcherBatch {
 if len(wg.watchers) == 0 {
  return nil
 }

 wb := make(watcherBatch)
 for _, ev := range evs {
  for w := range wg.watcherSetByKey(string(ev.Kv.Key)) {
   if ev.Kv.ModRevision >= w.minRev {
    // don't double notify
    wb.add(w, ev)
   }
  }
 }
 return wb
}

watcherSetByKey 用于返回满足 ev.Kv.Key 的 watcher, 这里内部实现使用 adt 红黑树,可以做到快速的范围匹配。感兴趣的可以看源代码。

func (w *watcher) send(wr WatchResponse) bool {
 progressEvent := len(wr.Events) == 0

 if len(w.fcs) != 0 {
  ne := make([]mvccpb.Event, 0, len(wr.Events))
  for i := range wr.Events {
   filtered := false
   for _, filter := range w.fcs {
    if filter(wr.Events[i]) {
     filtered = true
     break
    }
   }
   if !filtered {
    ne = append(ne, wr.Events[i])
   }
  }
  wr.Events = ne
 }

 // if all events are filtered out, we should send nothing.
 if !progressEvent && len(wr.Events) == 0 {
  return true
 }
 select {
 case w.ch <- wr:
  return true
 default:
  return false
 }
}

send 函数先 apply filter 过滤一遍,然后发送到 w.ch 中,如果满了则返回 false. 这个 w.ch 就是 v3rpc 使用的 channel, 有数据后就发送 http2 stream ...

慢速处理

1.慢速处理 victim

func (s *watchableStore) syncVictimsLoop() {
 defer s.wg.Done()

 for {
  for s.moveVictims() != 0 {
   // try to update all victim watchers
  }
  s.mu.RLock()
  isEmpty := len(s.victims) == 0
  s.mu.RUnlock()

  var tickc <-chan time.Time
  if !isEmpty {
   tickc = time.After(10 * time.Millisecond)
  }

  select {
  case <-tickc:
  case <-s.victimc:
  case <-s.stopc:
   return
  }
 }
}

调用 moveVictims 尝试去发送堆积的消息

// moveVictims tries to update watches with already pending event data
func (s *watchableStore) moveVictims() (moved int) {
 s.mu.Lock()
 victims := s.victims
 s.victims = nil
 s.mu.Unlock()

 var newVictim watcherBatch
 for _, wb := range victims {
  // try to send responses again
  for w, eb := range wb {
   // watcher has observed the store up to, but not including, w.minRev
   rev := w.minRev - 1
   if w.send(WatchResponse{WatchID: w.id, Events: eb.evs, Revision: rev}) {
    pendingEventsGauge.Add(float64(len(eb.evs)))
   } else {
    if newVictim == nil {
     newVictim = make(watcherBatch)
    }
    newVictim[w] = eb
    continue
   }
   moved++
  }

  // assign completed victim watchers to unsync/sync
  s.mu.Lock()
  s.store.revMu.RLock()
  curRev := s.store.currentRev
  for w, eb := range wb {
   if newVictim != nil && newVictim[w] != nil {
    // couldn't send watch response; stays victim
    continue
   }
   w.victim = false
   if eb.moreRev != 0 {
    w.minRev = eb.moreRev
   }
   if w.minRev <= curRev {
    s.unsynced.add(w)
   } else {
    slowWatcherGauge.Dec()
    s.synced.add(w)
   }
  }
  s.store.revMu.RUnlock()
  s.mu.Unlock()
 }

 if len(newVictim) > 0 {
  s.mu.Lock()
  s.victims = append(s.victims, newVictim)
  s.mu.Unlock()
 }

 return moved
}

代码很简单,先尝试发送 victims 这些消息,如果失败了,再放到 victims 中。成功了的话,还要看当前系统中的 Rev 是否与该 watcher.minRev 相等,再考滤放到 synced 组还是 unsynced 组中。

2.慢速处理 unsynced

syncWatchersLoop 函数循环调用 syncWatchers 处理 unsynced 组数据

// syncWatchers syncs unsynced watchers by:
// 1. choose a set of watchers from the unsynced watcher group
// 2. iterate over the set to get the minimum revision and remove compacted watchers
// 3. use minimum revision to get all key-value pairs and send those events to watchers
// 4. remove synced watchers in set from unsynced group and move to synced group
func (s *watchableStore) syncWatchers() int {
 s.mu.Lock()
 defer s.mu.Unlock()

 if s.unsynced.size() == 0 {
  return 0
 }

 s.store.revMu.RLock()
 defer s.store.revMu.RUnlock()

 // in order to find key-value pairs from unsynced watchers, we need to
 // find min revision index, and these revisions can be used to
 // query the backend store of key-value pairs
 curRev := s.store.currentRev
 compactionRev := s.store.compactMainRev

 wg, minRev := s.unsynced.choose(maxWatchersPerSync, curRev, compactionRev)
 minBytes, maxBytes := newRevBytes(), newRevBytes()
 revToBytes(revision{main: minRev}, minBytes)
 revToBytes(revision{main: curRev + 1}, maxBytes)

 // UnsafeRange returns keys and values. And in boltdb, keys are revisions.
 // values are actual key-value pairs in backend.
 tx := s.store.b.ReadTx()
 tx.RLock()
 revs, vs := tx.UnsafeRange(keyBucketName, minBytes, maxBytes, 0)
 var evs []mvccpb.Event
 if s.store != nil && s.store.lg != nil {
  evs = kvsToEvents(s.store.lg, wg, revs, vs)
 } else {
  // TODO: remove this in v3.5
  evs = kvsToEvents(nil, wg, revs, vs)
 }
 tx.RUnlock()

 var victims watcherBatch
 wb := newWatcherBatch(wg, evs)
 for w := range wg.watchers {
  w.minRev = curRev + 1

  eb, ok := wb[w]
  if !ok {
   // bring un-notified watcher to synced
   s.synced.add(w)
   s.unsynced.delete(w)
   continue
  }

  if eb.moreRev != 0 {
   w.minRev = eb.moreRev
  }

  if w.send(WatchResponse{WatchID: w.id, Events: eb.evs, Revision: curRev}) {
   pendingEventsGauge.Add(float64(len(eb.evs)))
  } else {
   if victims == nil {
    victims = make(watcherBatch)
   }
   w.victim = true
  }

  if w.victim {
   victims[w] = eb
  } else {
   if eb.moreRev != 0 {
    // stay unsynced; more to read
    continue
   }
   s.synced.add(w)
  }
  s.unsynced.delete(w)
 }
 s.addVictim(victims)

 vsz := 0
 for _, v := range s.victims {
  vsz += len(v)
 }
 slowWatcherGauge.Set(float64(s.unsynced.size() + vsz))

 return s.unsynced.size()
}
  1. choose 从 unsynced 中选择待发送数据的 watcher groups, 只看版本是否可用,即处于 [compactRev, curRev]
  2. UnsafeRange 从 boltdb 中获取所有满足条件的 keys/values
  3. 遍历 watchers,开始发送符合条件的 keys/values, 成功了那么从 unsynced 中删除,再加到 synced 中,否则加到 victims 队列中

小结

这次分享就这些,以后面还会分享更多 etcd 与 raft 的内容。

参考资料

[1]WatchServer: https://github.com/etcd-io/etcd/blob/master/etcdserver/api/v3rpc/grpc.go#L60,

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8