总结了分布式场景下的十大问题

243次阅读  |  发布于3年以前

本篇主要内容如下:

主要内容

前言

我们都在讨论分布式,特别是面试的时候,不管是招初级软件工程师还是高级,都会要求懂分布式,甚至要求用过。传得沸沸扬扬的分布式到底是什么东东,有什么优势?

借用火影忍术

风遁·螺旋手里剑

看过火影的同学肯定知道漩涡鸣人的招牌忍术:多重影分身之术

这两个忍术和分布式有什么关系?

案例:

多重影分身之术有什么缺点?

对分布式的通俗理解

优势可以从两方面考虑:一个是宏观,一个是微观。

任何事物有阴必有阳,那分布式又会带来哪些问题呢?

讲到分布式不得不知道 CAP 定理和 Base 理论,这里给不知道的同学做一个扫盲。

CAP 定理

在理论计算机科学中,CAP 定理指出对于一个分布式计算系统来说,不可能通是满足以下三点:

BASE 理论

BASEBasically Available(基本可用)、Soft state(软状态)和 Eventually consistent(最终一致性)三个短语的缩写。BASE 理论是对 CAPAP 的一个扩展,通过牺牲强一致性来获得可用性,当出现故障允许部分不可用但要保证核心功能可用,允许数据在一段时间内是不一致的,但最终达到一致状态。满足 BASE 理论的事务,我们称之为柔性事务

一、分布式消息队列的坑

消息队列如何做分布式?

将消息队列里面的消息分摊到多个节点(指某台机器或容器)上,所有节点的消息队列之和就包含了所有消息。

  1. 消息队列的坑之非幂等

幂等性概念

所谓幂等性就是无论多少次操作和第一次的操作结果一样。如果消息被多次消费,很有可能造成数据的不一致。而如果消息不可避免地被消费多次,如果我们开发人员能通过技术手段保证数据的前后一致性,那也是可以接受的,这让我想起了 Java 并发编程中的 ABA 问题,如果出现了 [[ABA问题] ,若能保证所有数据的前后一致性也能接受。

场景分析

RabbitMQRocketMQKafka 消息队列中间件都有可能出现消息重复消费问题。这种问题并不是 MQ 自己保证的,而是需要开发人员来保证。

这几款消息队列中间都是是全球最牛的分布式消息队列,那肯定考虑到了消息的幂等性。我们以 Kafka 为例,看看 Kafka 是怎么保证消息队列的幂等性。

Kafka 有一个 偏移量 的概念,代表着消息的序号,每条消息写到消息队列都会有一个偏移量,消费者消费了数据之后,每过一段固定的时间,就会把消费过的消息的偏移量提交一下,表示已经消费过了,下次消费就从偏移量后面开始消费。

坑:当消费完消息后,还没来得及提交偏移量,系统就被关机了,那么未提交偏移量的消息则会再次被消费。

如下图所示,队列中的数据 A、B、C,对应的偏移量分别为 100、101、102,都被消费者消费了,但是只有数据 A 的偏移量 100 提交成功,另外 2 个偏移量因系统重启而导致未及时提交。

系统重启,偏移量未提交

重启后,消费者又是拿偏移量 100 以后的数据,从偏移量 101 开始拿消息。所以数据 B 和数据 C 被重复消息。

如下图所示:

重启后,重复消费消息

避坑指南

  1. 消息队列的坑之消息丢失

坑:消息丢失会带来什么问题?如果是订单下单、支付结果通知、扣费相关的消息丢失,则可能造成财务损失,如果量很大,就会给甲方带来巨大损失。

那消息队列是否能保证消息不丢失呢?答案:否。主要有三种场景会导致消息丢失。

消息队列之消息丢失

(1)生产者存放消息的过程中丢失消息

生产者丢失消息

解决方案

对于 RabbitMQ 来说,生产者发送数据之前开启 RabbitMQ 的事务机制channel.txselect ,如果消息没有进队列,则生产者受到异常报错,并进行回滚 channel.txRollback,然后重试发送消息;如果收到了消息,则可以提交事务 channel.txCommit。但这是一个同步的操作,会影响性能。

我们可以采用另外一种模式:confirm 模式来解决同步机制的性能问题。每次生产者发送的消息都会分配一个唯一的 id,如果写入到了 RabbitMQ 队列中,则 RabbitMQ 会回传一个 ack 消息,说明这个消息接收成功。如果 RabbitMQ 没能处理这个消息,则回调 nack 接口。说明需要重试发送消息。

也可以自定义超时时间 + 消息 id 来实现超时等待后重试机制。但可能出现的问题是调用 ack 接口时失败了,所以会出现消息被发送两次的问题,这个时候就需要保证消费者消费消息的幂等性。

事务模式confirm 模式的区别:

(2)消息队列丢失消息

消息队列丢失消息

消息队列的消息可以放到内存中,或将内存中的消息转到硬盘(比如数据库)中,一般都是内存和硬盘中都存有消息。如果只是放在内存中,那么当机器重启了,消息就全部丢失了。如果是硬盘中,则可能存在一种极端情况,就是将内存中的数据转换到硬盘的期间中,消息队列出问题了,未能将消息持久化到硬盘。

解决方案

(3)消费者丢失消息

消费者丢失消息

消费者刚拿到数据,还没开始处理消息,结果进程因为异常退出了,消费者没有机会再次拿到消息。

解决方案

问题: 那这种主动 ack 有什么漏洞了?如果 主动 ack 的时候挂了,怎么办?

则可能会被再次消费,这个时候就需要幂等处理了。

问题: 如果这条消息一直被重复消费怎么办?

则需要有加上重试次数的监测,如果超过一定次数则将消息丢失,记录到异常表或发送异常通知给值班人员。

(4)RabbitMQ 消息丢失总结

RabbitMQ 丢失消息的处理方案

(5)Kafka 消息丢失

场景:Kafka 的某个 broker(节点)宕机了,重新选举 leader (写入的节点)。如果 leader 挂了,follower 还有些数据未同步完,则 follower 成为 leader 后,消息队列会丢失一部分数据。

解决方案

  1. 消息队列的坑之消息乱序

坑: 用户先下单成功,然后取消订单,如果顺序颠倒,则最后数据库里面会有一条下单成功的订单。

RabbitMQ 场景:

RabbitMQ消息乱序场景 RabbitMQ 消息乱序场景

RabbitMQ 解决方案:

RabbitMQ 解决方案

Kafka 场景:

Kafka 消息丢失场景

Kafka 解决方案:

Kafka 消息乱序解决方案

  1. 消息队列的坑之消息积压

消息积压:消息队列里面有很多消息来不及消费。

场景 1: 消费端出了问题,比如消费者都挂了,没有消费者来消费了,导致消息在队列里面不断积压。

场景 2: 消费端出了问题,比如消费者消费的速度太慢了,导致消息不断积压。

坑:比如线上正在做订单活动,下单全部走消息队列,如果消息不断积压,订单都没有下单成功,那么将会损失很多交易。

消息队列之消息积压

解决方案:解铃还须系铃人

消息积压解决方案

  1. 消息队列的坑之消息过期失效

坑:RabbitMQ 可以设置过期时间,如果消息超过一定的时间还没有被消费,则会被 RabbitMQ 给清理掉。消息就丢失了。

消息过期失效

解决方案:

消息过期失效解决方案

  1. 消息队列的坑之队列写满

坑:当消息队列因消息积压导致的队列快写满,所以不能接收更多的消息了。生产者生产的消息将会被丢弃。

解决方案:

二、分布式缓存的坑

在高频访问数据库的场景中,我们会在业务层和数据层之间加入一套缓存机制,来分担数据库的访问压力,毕竟访问磁盘 I/O 的速度是很慢的。比如利用缓存来查数据,可能5ms就能搞定,而去查数据库可能需要 50 ms,差了一个数量级。而在高并发的情况下,数据库还有可能对数据进行加锁,导致访问数据库的速度更慢。

分布式缓存我们用的最多的就是 Redis了,它可以提供分布式缓存服务。

  1. Redis 数据丢失的坑

哨兵机制

Redis 可以实现利用哨兵机制实现集群的高可用。那什么十哨兵机制呢?

坑: 当主节点发生故障时,需要进行主备切换,可能会导致数据丢失。

异步复制数据导致的数据丢失

主节点异步同步数据给备用节点的过程中,主节点宕机了,导致有部分数据未同步到备用节点。而这个从节点又被选举为主节点,这个时候就有部分数据丢失了。

脑裂导致的数据丢失

主节点所在机器脱离了集群网络,实际上自身还是运行着的。但哨兵选举出了备用节点作为主节点,这个时候就有两个主节点都在运行,相当于两个大脑在指挥这个集群干活,但到底听谁的呢?这个就是脑裂。

那怎么脑裂怎么会导致数据丢失呢?如果发生脑裂后,客户端还没来得及切换到新的主节点,连的还是第一个主节点,那么有些数据还是写入到了第一个主节点里面,新的主节点没有这些数据。那等到第一个主节点恢复后,会被作为备用节点连到集群环境,而且自身数据会被清空,重新从新的主节点复制数据。而新的主节点因没有客户端之前写入的数据,所以导致数据丢失了一部分。

避坑指南

注意:缓存雪崩缓存穿透缓存击穿并不是分布式所独有的,单机的时候也会出现。所以不在分布式的坑之列。

三、分库分表的坑

1.分库分表的坑之扩容

分库、分表、垂直拆分和水平拆分

坑:分库分表是一个运维层面需要做的事情,有时会采取凌晨宕机开始升级。可能熬夜到天亮,结果升级失败,则需要回滚,其实对技术团队都是一种煎熬。

怎么做成自动的来节省分库分表的时间?

坑: 分库分表看似光鲜亮丽,但分库分表会引入什么新的问题呢?

垂直拆分带来的问题

水平拆分带来的问题

2.分库分表的坑之唯一 ID

为什么分库分表需要唯一 ID

坑: 唯一 ID 的生成方式有 n 种,各有各的用途,别用错了。

生成唯一 ID 的原则

生成唯一 ID 的几种方式

基本原理和优缺点:

怎么选择:一般自己的内部系统,雪花算法足够,如果还要更加安全可靠,可以选择百度或美团的生成唯一 ID 的方案。

四、分布式事务的坑

怎么理解事务?

:如何保证分布式中的事务正确执行,是个大难题。

分布式事务的几种主要方式

XA 方案原理

XA 方案

TCC 方案

应用场景:

缺点:

Sega 方案

基本原理:

适用场景:

优势:

缺点:

可靠消息一致性方案

可靠消息一致性方案

基本原理:

最大努力通知方案

基本原理:

几种方案如何选择

写在最后

分布式还有很多坑,这篇只是一个小小的总结,从这些坑中,我们也知道分布式有它的优势也有它的劣势,那到底该不该用分布式,完全取决于业务、时间、成本以及开发团队的综合实力。后续我会继续分享分布式中的一些底层原理,当然也少不了分享一些避坑指南。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8