聊聊 Kafka: Kafka 的基础架构

1035次阅读  |  发布于3年以前

一、我与快递小哥的故事

一个很正常的一个工作日,老周正在忙着啪啪啪的敲代码,办公司好像安静的只剩敲代码的声音。突然,我的电话铃声响起了,顿时打破了这种安静。

我:喂,哪位? 快递小哥:我是顺丰快递的,你有个包裹,请问你现在在家吗? 我:哦,我现在不在家,晚上你再帮我送过来吧。 快递小哥:要不我帮你放在菜鸟驿站吧? 我:可以可以,谢谢了。

还好有菜鸟驿站,不然工作日加班到很晚才回家,晚上快递小哥又下班了,得等到周末我在家快递小哥才能帮我送了。如果没有菜鸟驿站的话,我们来看下快递小哥与我的交互图:

要是有菜鸟驿站的话,我们再来看下交互图:

上面故事中的菜鸟驿站就是消息队列,也就是我们本篇要讲的 Kafka;而快递小哥就是生产者,老周就是消费者。老周一直很忙没去菜鸟驿站取快递,就是消息积压。我给快递小哥发消息说,确认快递已经取到了,就是 ACK 机制。小伙伴们可能发现了菜鸟驿站的好处了,真香。

这里老周来总结几点消息队列的好处也就是使用场景:

我与快递小哥的故事是真实发生的哈,正好我有个读者前段时间面试顺丰的时候被问到 Kafka 了,要我出 Kafka 的内容,所以有了灵感写了这篇文章。

二、Kafka 介绍

Kafka 是最初由 Linkedin 公司开发,是一个 分布式、分区的、多副本的、多生产者、多订阅者,基于zookeeper 协调的分布式消息系统。常见可以用于 web/nginx 日志、访问日志,消息服务等。

Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

2.1 基于zookeeper 协调

这里老周要提一下,Kafka 2.8.0 版本实现了 Raft 分布式一致性机制,意味着可以脱离 ZooKeeper 独立运行了。

ZooKeeper 在 Kafka 中扮演着重要的角色,用来存储 Kafka 的元数据。ZooKeeper 存储着 Partition 和 Broker 的元数据 ,同时也负责 Kafka Controller 的选举工作。

对于 Kafka 来讲,ZooKeeper 是一套外部系统,要想部署一套 Kafka 集群,就要同时部署、管理、监控 ZooKeeper。ZooKeeper 有自己的配置方式、管理工具,和 Kafka 完全不一样,所以,一起搞两套分布式系统,自然就提升了复杂度,也更容易出现问题。有时工作量还会加倍,例如要开启一些安全特性,Kafka 和 ZooKeeper 中都需要配置。除了复杂度,外部存储也会降低系统效率。

例如:

所以,ZooKeeper 带来的复杂度、系统效率这两个问题已经成为 Kafka 的痛点,Kafka 团队一直在努力去除对 ZooKeeper 的依赖。Kafka 2.8.0 这个版本终于实现了。

使用 Raft 模式之后,元数据、配置信息都会保存在 @metadata 这个 Topic 中,自动在集群中复制。这样 Kafka 就会简单轻巧很多。

但需要注意的是,Zookeeper-less Kafka 还属于早期版本,并不完善,所以,现在不要应用在线上产品环境中。

2.2 主要应用场景

2.3 Kafka 主要设计目标

2.4 两种主要的消息传递模式

2.4.1 点对点模式

点对点模式通常是基于拉取或者轮询的消息传送模型,这个模型的特点是发送到队列的消息被一个且只有一个消费者进行处理。生产者将消息放入消息队列后,由消费者主动的去拉取消息进行消费。点对点模型的的优点是消费者拉取消息的频率可以由自己控制。但是消息队列是否有消息需要消费,在消费者端无法感知,所以在消费者端需要额外的线程去监控。

2.4.2 发布订阅模式

发布订阅模式是一个基于消息送的消息传送模型,该模型可以有多种不同的订阅者。生产者将消息放入消息队列后,队列会将消息推送给订阅过该类消息的消费者。由于是消费者被动接收推送,所以无需感知消息队列是否有待消费的消息!但是 consumer1、consumer2、consumer3 由于机器性能不一样,所以处理消息的能力也会不一样,但消息队列却无法感知消费者消费的速度!所以推送的速度成了发布订阅模模式的一个问题!假设三个消费者处理速度分别是 8M/s、5M/s、2M/s,如果队列推送的速度为5M/s,则 consumer3 无法承受!如果队列推送的速度为 2M/s,则 consumer1、consumer2 会出现资源的极大浪费!

大部分的消息系统选用发布订阅模式。Kafka 就是一种发布订阅模式。

2.5 Kafka 四个核心 API

三、Kafka 的优势

四、Kafka 的应用场景

4.1 日志收集

Kafka 可以收集各种服务的 Log,通过 Kafka 以统一接口服务的方式开放给各种 Consumer。

4.2 消息系统

解耦生产者和消费者、缓存消息等。

4.3 用户活动跟踪

4.4 运营指标

Kafka 也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。

4.5 流式处理

比如 Spark Streaming 和 Storm。

五、基础架构

5.1 Kafka 架构图

5.2 消息和批次

5.3 模式

5.4 主题和分区

5.5 生产者和消费者

5.6 broker 和集群

每个集群都有一个 broker 是集群控制器(自动从集群的活跃成员中选举出来)。控制器负责管理工作:

集群中一个分区属于一个 broker,该 broker 称为分区首领。 一个分区可以分配给多个 broker,此时会发生分区复制。 分区的复制提供了消息冗余, 高可用 。副本分区不负责处理消息的读写。

六、核心概念

6.1 Producer

生产者创建消息。

该角色将消息发布到 Kafka 的 topic 中。broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。

一般情况下,一个消息会被发布到一个特定的主题上。

6.2 Consumer

消费者读取消息。

6.3 Broker一个独立的 Kafka 服务器被称为 broker。

broker 为消费者提供服务,对读取分区的请求作出响应,返回已经提交到磁盘上的消息。

broker 是集群的组成部分。每个集群都有一个 broker 同时充当了集群控制器的角色(自动从集群的活跃成员中选举出来)。

控制器负责管理工作,包括将分区分配给 broker 和监控 broker。

在集群中,一个分区从属于一个 broker,该 broker 被称为分区的首领。

6.4 Topic每条发布到 Kafka 集群的消息都有一个类别,这个类别被称为 Topic。

物理上不同 Topic 的消息分开存储。

主题就好比数据库的表,尤其是分库分表之后的逻辑表。

6.5 Partition

6.6 Replicas

Kafka 使用主题来组织数据,每个主题被分为若干个分区,每个分区有多个副本。那些副本被保存在broker 上,每个broker 可以保存成百上千个属于不同主题和分区的副本。

副本有以下两种类型:

6.7 Offset

6.7.1 生产者 Offset

消息写入的时候,每一个分区都有一个 offset,这个 offset 就是生产者的 offset,同时也是这个分区的最新最大的 offset。

有些时候没有指定某一个分区的 offset,这个工作 kafka 帮我们完成。

6.7.2 消费者 Offset

这是某一个分区的 offset 情况,生产者写入的 offset 是最新最大的值是12,而当 Consumer A 进行消费时,从 0 开始消费,一直消费到了 9,消费者的 offset 就记录在 9,Consumer B 就纪录在了 11。等下一次他们再来消费时,他们可以选择接着上一次的位置消费,当然也可以选择从头消费,或者跳到最近的记录并从“现在”开始消费。

6.8、副本

Kafka 通过副本保证高可用。副本分为首领副本(Leader)和跟随者副本(Follower)。

跟随者副本包括同步副本不同步副本,在发生首领副本切换的时候,只有同步副本可以切换为首领副本。

6.8.1 AR

分区中的所有副本统称为AR(Assigned Repllicas)

AR=ISR+OSR

6.8.2 ISR

所有与leader副本保持一定程度同步的副本(包括Leader)组成ISR(In-Sync Replicas),ISR 集合是 AR 集合中的一个子集。消息会先发送到 leader 副本,然后 follower 副本才能从 leader 副本中拉取消息进行同步,同步期间内 follower 副本相对于 leader 副本而言会有一定程度的滞后。前面所说的“一定程度”是指可以忍受的滞后范围,这个范围可以通过参数进行配置。

6.8.3 OSR

与leader副本同步滞后过多的副本(不包括leader)副本,组成OSR(Out-Sync Relipcas)。在正常情况下,所有的 follower 副本都应该与 leader 副本保持一定程度的同步,即 AR=ISR,OSR 集合为空。

6.8.4 HW

HW 是High Watermak的缩写, 俗称高水位,它表示了一个特定消息的偏移量(offset),消费者只能拉取到这个offset之前的消息

6.8.5 LEO

LEO 是Log End Offset的缩写,它表示了当前日志文件中下一条待写入消息的 offset。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8