5种全局ID生成方式、优缺点及改进方案

215次阅读  |  发布于3年以前

文章目录

全局唯一id介绍

系统唯一id是我们在设计阶段常常遇到的问题。在复杂的分布式系统中,几乎都需要对大量的数据和消息进行唯一标识。在设计初期,我们需要考虑日后数据量的级别,如果可能会对数据进行分库分表,那么就需要有一个全局唯一id来标识一条数据或记录。生成唯一id的策略有多种,但是每种策略都有它的适用场景、优点以及局限性。

全局唯一id特点:

常见全局唯一id生成策略

1、数据库自增长序列或字段生成id

最常见的一种生成id方式。利用数据库本身来进行设置,在全数据库内保持唯一。

【优点】

非常简单。利用现有数据库系统的功能实现,成本小,代码简单,性能可以接受。ID号单调递增。可以实现一些对ID有特殊要求的业务,比如对分页或者排序结果这类需求有帮助。

【缺点】

  1. 强依赖DB。不同数据库语法和实现不同,数据库迁移的时候、多数据库版本支持的时候、或分表分库的时候需要处理,会比较麻烦。当DB异常时整个系统不可用,属于致命问题。
  2. 单点故障。在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
  3. 数据一致性问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。
  4. 难于扩展。在性能达不到要求的情况下,比较难于扩展。ID发号性能瓶颈限制在单台MySQL的读写性能。

【部分优化方案】

针对主库单点, 如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

2、UUID

常见的生成id方式,利用程序生成。

UUID (Universally Unique Identifier) 的目的,是让分布式系统中的所有元素,都能有唯一的辨识资讯,而不需要透过中央控制端来做辨识资讯的指定。如此一来,每个人都可以建立不与其它人冲突的 UUID。在这样的情况下,就不需考虑数据库建立时的名称重复问题。

UUID的标准形式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有5种方式生成UUID。

另外,关注Java知音公众号,回复“后端面试”,送你一份面试题宝典!

在Java中我们可以直接使用下面的API生成UUID:

UUID uuid  =  UUID.randomUUID(); String s = UUID.randomUUID().toString();

【优点】

【缺点】

【部分优化方案】

3、Redis生成ID

当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCR和INCRBY来实现。

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

这个负载到哪台机器上需要提前设定好,未来很难做修改。但是3-5台服务器基本能够满足,都可以获得不同的ID。步长和初始值一定需要事先设定好。使用Redis集群也可以防止单点故障的问题。

比较适合使用Redis来生成日切流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

【优点】

【缺点】

4、zookeeper生成ID

zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。

很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。

5、Twitter的snowflake算法

snowflake(雪花算法)是Twitter开源的分布式ID生成算法,结果是一个long型的ID。这种方案把64-bit分别划分成多段,分开来标示机器、时间等。如图:

其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。具体实现的代码可以参看github。

snowflake算法可以根据自身项目的需要进行一定的修改。比如估算未来的数据中心个数,每个数据中心的机器数以及统一毫秒可以能的并发数来调整在算法中所需要的bit数。

【优点】

【缺点】

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8