Kirill Sh@Unsplash
高可用架构设计最核心的就是两点:解耦和冗余。解耦包括业务状态分离(无状态架构设计)、分库分表等。冗余包括缓存、CDN、主从备份、主主备份、GeoDNS 等。一个好的架构设计需要在产品迭代的不同阶段选择合适的技术,从而既能在合理的成本条件下有效保障当前的业务需求,又能考虑到业务下一步发展的可能性。原文链接:[How to design a system to scale to your first 100 million users](https://levelup.gitconnected.com/how-to-design-a-system-to-scale-to-your-first-100-million-users-4450a2f9703d)
对于软件架构师来说,设计一个支持数亿用户的系统是一个巨大的挑战(不过在读了这篇文章后,也许就没那么难了)
以下是本文涉及的一些主题:
我们暂时不讨论高性能计算中的其他常用术语,比如容错、可靠性、高可用性等。
让我们平静一下,旅程即将开始!
我们先从设计一个仅支持少量用户的基本应用程序开始。最简单的方法就是将整个应用程序部署到单个服务器上,这可能也是大多数人开始的方式。如下图所示。
在同一台物理服务器上部署 Web 服务器和数据库服务器
但目前的架构有如下缺陷:
在本例中,我们没有做故障恢复和冗余。如果一个服务器宕机,意味着所有服务都会挂掉。
在上图中,用户(或客户端)连接到 DNS⁵以获得我们的系统所在服务器的 IP 地址。一旦获得了 IP 地址,请求就直接发送到我们的系统。
每当你访问一个网站,你的电脑将会执行一次 DNS 查寻。
通常,DNS 以付费服务的形式由服务器托管公司提供,并不需要在我们自己的服务器上运行。
由于许多原因,例如数据量的增加、业务的增加(例如事务数量)和用户的增长,我们的系统可能不得不进行扩展。
可伸缩性通常意味着能够处理更多的用户、客户、数据、事务或请求,可以动态增加更多资源而不会影响用户体验。
我们必须决定如何扩大这个系统的规模。在本例中,有以下两种类型的扩展:垂直扩展(scale-up)和水平扩展(scale-out)。
scale up vs scale out
Scaling up(也被称为 vertical scaling),指的是使系统的资源最大化,以扩展其处理不断增加的负载的能力——例如,我们通过增加内存和 CPU 来增加服务器的处理能力。
如果我们服务器的内存为 8GB,那么只需要更换或添加硬件就可以很容易地升级到 32GB 甚至 128GB。
有很多方法可以实现垂直扩展,如下所示:
如果可以负担硬件升级的成本,垂直扩展对于小型系统来说是一个不错的选择,但它也有以下严重的限制:
扩展不仅适用于硬件,也适用于软件,例如,它包括优化数据库查询和优化应用程序代码。
随着用户数量的增长,一台服务器是远远不够的。我们需要考虑将一个服务器拆分为多个服务器。
随着用户数量的增长,一台服务器远远不够
这种架构有如下优点:
Scaling out(也被称为“horizontal scaling”),指的是向资源池中添加更多的实体(机器、服务)。水平扩展比垂直扩展更难实现,需要我们在构建系统之前就考虑好。
因为需要更多的服务器来进行最基本的扩展,所以支持水平扩展通常会在业务初期增加更多的成本,但在后期会获得回报,因此我们需要权衡利弊。
负载均衡器是一种专门的硬件或软件组件,帮助将流量均匀的分发到服务器集群中,以提高系统(包括但不限于应用程序、网站或数据库)的响应性和可用性。
使用负载均衡器分发流量
通常,负载均衡器位于客户端和服务器之间,接收网络和应用程序流量,并使用各种算法将流量均匀分发到多个后端服务器。它也可以部署在各种环境中,例如:在 Web 服务器和数据库服务器之间,或者在客户端和 Web 服务器之间。
HAProxy 和 Nginx 是两个流行的开源负载均衡软件。
负载均衡是一种容错保证技术,可提高系统可用性,如下所示:
负载均衡器采用各种策略和算法来优化负载分配,如下所示:
在多个服务器之间均衡分发请求的最直接的方法是使用硬件设备。
软件负载均衡器是硬件负载平衡器的廉价替代品,工作在 4 层(网络层)和 7 层(应用层)协议栈上。
对于一个简单的系统,我们可以使用像 Oracle 或 MySQL 这样的 RDBMS 来保存数据。但是当我们需要扩展容量的时候,关系型数据库系统也面临挑战。
有许多技术可以用来扩展关系型数据库:主从备份(master-slave replication)、主主备份(master-master replication)、联合(federation)、分片(sharding)、去规格化(denormalization)和 SQL 调优。
Federation 是数据库垂直分库,根据业务逻辑,将原本耦合在一起的数据库划分出多个不同的数据。Sharding 是数据库水平分库,以某个字段(比方说用户 id)为 key,将一张大表切割成多个小表,每个用户的数据可以通过访问不同的小表获取。Denormalization 通过冗余数据减少数据查询开销。
主从备份允许将一个数据库服务器(主服务器)的数据复制到一个或多个其他数据库服务器(从服务器),如下图所示。
所有变更提交到主服务器
实践中仍然存在一些瓶颈:
对于只有一个服务器可以处理更新请求的实现,下面是一些解决方案:
请记住,如果同步解决方案太慢,请更改为异步解决方案。
每个数据库服务器都可以充当主服务器,同时其他服务器也被视为主服务器。所有主服务器在某个时间点同步数据,从而确保它们都有正确的和最新的数据。
所有节点读写所有数据
主主备份的优点:
联合(或功能分区)按功能对数据库进行分割。例如,可以使用三个数据库:论坛、用户和产品,而不是单一的、整体的数据库,从而减少对每个数据库的读写流量,从而减少备份延迟。
Federation 根据功能对数据库进行分割
更小的数据库会产生更多的数据,这些数据可以放入内存中,而这又会由于缓存局部性的改善而导致更多的缓存命中。由于不需要单独的中心化主服务器进行序列化写操作,我们可以并行地进行写操作,从而提高吞吐量。
分片(也称为数据分区)是一种将大数据库分解为许多较小部分的技术,这样每个数据库只管理数据的一个子集。
理想情况下,我们让不同的用户与不同的数据库节点通信。它有助于提高系统的可管理性、性能、可用性和负载均衡。
实践中有许多不同的技术可以将数据库分解为多个更小的部分。
在这种技术中,我们将不同的行放入不同的表中。例如,如果我们将用户概要文件存储在一个表中,我们可以决定 id 小于 1000 的用户存储在一个表中,id 大于 1001 且小于 2000 的用户存储在另一个表中。
把不同的行放到不同的表中
在本例中,我们将数据划分为与特定特性相关的表存储在它们自己的服务器中。例如,如果我们正在构建一个类似 Instagram 的系统——我们需要存储与用户、他们上传的照片和他们关注的人相关的数据——我们可以决定将用户的个人资料放在一个数据库服务器上,朋友列表放在另一个服务器上,照片放在第三个服务器上。
将数据划分为与特定特性相关的表存储在各自的服务器上
应用怎么知道数据储存在哪个数据库里呢?创建一个查找服务可以以一种松耦合的方式解决问题,该服务知道当前的分区模式,并保存每个实体的以及存储在哪个数据库分片上的映射。
请记住,分片技术存在以下一些常见问题:
去规格化试图以牺牲部分写性能为代价来提高读性能,数据的冗余副本被写入多个表中,以避免昂贵的 joins 操作。
一旦数据通过联合和分片等技术分布,管理跨数据中心的 joins 操作将进一步增加复杂性。去规格化可以避免对这种复杂 joins 操作的需要。
大多数系统中,读操作的数量可能远远超过写操作,达到 100:1,甚至 1000:1。导致依赖于复杂数据库 joins 操作的读操作会非常昂贵,需要在磁盘操作上花费大量时间。
一些 RDBMS,如 PostgreSQL 和 Oracle,支持 Materialized 视图来处理存储冗余信息和保持冗余副本一致的工作。
Facebook 的 Ryan Mack 在他的一篇精彩文章中分享了不少 Timeline 利用去规格化技术实施数据库优化的故事:Building Timeline: Scaling up to hold your life story⁶。
当前有两种主要类型的数据库解决方案:SQL 和 NoSQL。它们在构建方式、存储的信息类型和使用的存储方法上都有所不同。
关系型数据库以行和列的形式存储数据。每一行包含关于一个实体的所有信息,每一列包含所有独立的数据点。
当前最流行的关系型数据库是 MySQL, Oracle, MS SQL Server, SQLite, Postgres 和 MariaDB。
也被称为非关系型数据库。这些数据库通常分为五个主要类别:键值、图、列、文档和 Blob 存储。
数据存储在键值对数组中。' key '是一个链接到' value '的属性名。
知名的键值存储数据库包括 Redis、Voldemort 和 Dynamo。
数据存储在文档中(而不是表中的行和列),这些文档在集合中组合在一起。每个文档可以有完全不同的结构。
文档数据库包括 CouchDB 和 MongoDB。
在列式数据库中,以列族(column families)存储数据,而不是'表',列族是行的容器。与关系数据库不同,我们不需要预先知道所有的列,每一行也不需要有相同的列数。
列式数据库最适合分析大型数据集,著名的有 Cassandra 和 HBase。
如果数据之间的关系最适合用图的形式表现,那么图数据库是最好的选择。数据在图数据库中保存在带有节点(实体)、属性(关于实体的信息)和线(实体之间的连接)的图结构中。
图数据库的例子包括 Neo4J 和 InfiniteGraph。
Blob 更像是文件的键/值存储,可以通过 Amazon S3、Windows Azure Blob Storage、谷歌 Cloud Storage、Rackspace Cloud Files 或 OpenStack Swift 等 API 访问。
谈到数据库技术,没有一刀切的解决方案。这就是为什么许多企业同时依赖 SQL 和 NosQL 数据库来满足不同的需求。
看看下面的指导吧!
用哪个数据库?
我们已经扩展了数据层,现在我们还需要扩展 Web 层。为此,我们需要将用户会话(状态)数据从 Web 层移出,将它们存储在数据库中(关系型数据库或 NoSQL)。这也被称为无状态架构。
简单的无状态系统
不要使用有状态架构。必须尽可能选择无状态架构,因为状态的实现限制了可伸缩性,降低了可用性,并增加了成本。
在上面的场景中,负载均衡器可以选择任意服务器进行最优的请求处理,从而达到最大的效率。
负载均衡可以帮助我们在不断增加的服务器数量上进行水平扩展,但缓存将使我们能够更好地利用已有资源,以便在后续请求期间更快地提供数据。
如果数据不在缓存中,从数据库中获取数据,然后将其保存到缓存中并从中读取
通过添加缓存,我们可以避免直接从服务器读取网页或数据,从而减少服务器的响应时间和负载,这有助于提高应用程序的可伸缩性。
缓存可以应用于多个层次,如数据库层、Web 服务器层和网络层。
CDN 服务器保存静态内容(如图像、网页等)的缓存副本,并从最近的位置提供服务。
因为数据可以在最接近用户的位置获取,因此使用 CDN 可以减少用户页面加载时间。另外,因为内容被存储在多个节点上,也有助于增强内容的可用性。
因为数据是在最接近它的位置检索的,因此使用 CDN 减少了用户页面加载时间
CDN 服务器向我们的 Web 服务器发出请求,以验证缓存的内容并在需要时更新它们。缓存的通常都是静态内容的,如 HTML 页面、图像、JavaScript 文件、CSS 文件等。
当我们的应用面向全球用户,我们将有机会拥有并运营世界各地的数据中心,以保证产品 7×24 运行。访问请求将被路由到基于 GeoDNS 选择的“最佳”数据中心进行处理。
应用服务全球用户
GeoDNS 是一种可以根据用户的位置将域名解析为 IP 地址的 DNS 服务,来自亚洲的客户端连接到的 IP 地址可能与来自欧洲的客户端连接到的 IP 地址不同。
在产品迭代的不同阶段应用所有这些技术(无状态架构,负载均衡器,缓存,多数据中心,CDN,数据分片等),可以帮助我们很容易地将系统扩展到支持超过 1 亿用户的规模。
扩容是一个逐步迭代的过程
有很多方法可以提高可伸缩性和系统性能:
很简单,不是么?
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8