Go语言如何操纵Kafka保证无消息丢失

1068次阅读  |  发布于3年以前

背景

目前一些互联网公司会使用消息队列来做核心业务,因为是核心业务,所以对数据的最后一致性比较敏感,如果中间出现数据丢失,就会引来用户的投诉,年底绩效就变成325了。之前和几个朋友聊天,他们的公司都在用kafka来做消息队列,使用kafka到底会不会丢消息呢?如果丢消息了该怎么做好补偿措施呢?本文我们就一起来分析一下,并介绍如何使用Go操作Kafka可以不丢失数据。

本文操作kafka基于:https://github.com/Shopify/sarama

初识kafka架构

维基百科对kafka的介绍:

Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,这使它作为企业级基础设施来处理流式数据非常有价值。此外,Kafka可以通过Kafka Connect连接到外部系统(用于数据输入/输出),并提供了Kafka Streams——一个Java]流式处理库。该设计受事务日志的影响较大。

kafka的整体架构比较简单,主要由producerbrokerconsumer组成:

截屏2021-09-12 上午10.00.13

针对架构图我们解释一个各个模块:

还有些概念我们也介绍一下:

kafka丢消息的三个节点

生产者push消息节点

先看一下producer的大概写入流程:

截屏2021-09-12 上午11.16.43

通过这个流程我们可以看到kafka最终会返回一个ack来确认推送消息结果,这里kafka提供了三种模式:

NoResponse RequiredAcks = 0
WaitForLocal RequiredAcks = 1
WaitForAll RequiredAcks = -1

所以根据这三种模式我们就能推断出生产者在push消息时有一定几率丢失的,分析如下:

所以在生产环境中我们可以选择模式2或者模式3来保证消息的可靠性,具体需要根据业务场景来进行选择,在乎吞吐量就选择模式2,不在乎吞吐量,就选择模式3,要想完全保证数据不丢失就选择模式3是最可靠的。

kafka集群自身故障造成

kafka集群接收到数据后会将数据进行持久化存储,最终数据会被写入到磁盘中,在写入磁盘这一步也是有可能会造成数据损失的,因为写入磁盘的时候操作系统会先将数据写入缓存,操作系统将缓存中数据写入磁盘的时间是不确定的,所以在这种情况下,如果kafka机器突然宕机了,也会造成数据损失,不过这种概率发生很小,一般公司内部kafka机器都会做备份,这种情况很极端,可以忽略不计。

消费者pull消息节点

push消息时会把数据追加到Partition并且分配一个偏移量,这个偏移量代表当前消费者消费到的位置,通过这个Partition也可以保证消息的顺序性,消费者在pull到某个消息后,可以设置自动提交或者手动提交commit,提交commit成功,offset就会发生偏移:

截屏2021-09-12 下午3.37.33

所以自动提交会带来数据丢失的问题,手动提交会带来数据重复的问题,分析如下:

比起数据丢失,重复消费是符合业务预期的,我们可以通过一些幂等性设计来规避这个问题。

实战

完整代码已经上传github:https://github.com/asong2020/Golang_Dream/tree/master/code_demo/kafka_demo

解决push消息丢失问题

主要是通过两点来解决:

因此我们写出如下代码(摘出创建client部分):

func NewAsyncProducer() sarama.AsyncProducer {
 cfg := sarama.NewConfig()
 version, err := sarama.ParseKafkaVersion(VERSION)
 if err != nil{
  log.Fatal("NewAsyncProducer Parse kafka version failed", err.Error())
  return nil
 }
 cfg.Version = version
 cfg.Producer.RequiredAcks = sarama.WaitForAll // 三种模式任君选择
 cfg.Producer.Partitioner = sarama.NewHashPartitioner
 cfg.Producer.Return.Successes = true
 cfg.Producer.Return.Errors = true
 cfg.Producer.Retry.Max = 3 // 设置重试3次
 cfg.Producer.Retry.Backoff = 100 * time.Millisecond
 cli, err := sarama.NewAsyncProducer([]string{ADDR}, cfg)
 if err != nil{
  log.Fatal("NewAsyncProducer failed", err.Error())
  return nil
 }
 return cli
}

解决pull消息丢失问题

这个解决办法就比较粗暴了,直接使用自动提交的模式,在每次真正消费完之后在自己手动提交offset,但是会产生重复消费的问题,不过很好解决,使用幂等性操作即可解决。

代码示例:

func NewConsumerGroup(group string) sarama.ConsumerGroup {
 cfg := sarama.NewConfig()
 version, err := sarama.ParseKafkaVersion(VERSION)
 if err != nil{
  log.Fatal("NewConsumerGroup Parse kafka version failed", err.Error())
  return nil
 }

 cfg.Version = version
 cfg.Consumer.Group.Rebalance.Strategy = sarama.BalanceStrategyRange
 cfg.Consumer.Offsets.Initial = sarama.OffsetOldest
 cfg.Consumer.Offsets.Retry.Max = 3
 cfg.Consumer.Offsets.AutoCommit.Enable = true // 开启自动提交,需要手动调用MarkMessage才有效
 cfg.Consumer.Offsets.AutoCommit.Interval = 1 * time.Second // 间隔
 client, err := sarama.NewConsumerGroup([]string{ADDR}, group, cfg)
 if err != nil {
  log.Fatal("NewConsumerGroup failed", err.Error())
 }
 return client
}

上面主要是创建ConsumerGroup部分,细心的读者应该看到了,我们这里使用的是自动提交,说好的使用手动提交呢?这是因为我们这个kafka库的特性不同,这个自动提交需要与MarkMessage()方法配合使用才会提交(有疑问的朋友可以实践一下,或者看一下源码),否则也会提交失败,因为我们在写消费逻辑时要这样写:

func (e EventHandler) ConsumeClaim(session sarama.ConsumerGroupSession, claim sarama.ConsumerGroupClaim) error {
 for msg := range claim.Messages() {
  var data common.KafkaMsg
  if err := json.Unmarshal(msg.Value, &data); err != nil {
   return errors.New("failed to unmarshal message err is " + err.Error())
  }
  // 操作数据,改用打印
  log.Print("consumerClaim data is ")

  // 处理消息成功后标记为处理, 然后会自动提交
  session.MarkMessage(msg,"")
 }
 return nil
}

或者直接使用手动提交方法来解决,只需两步:

第一步:关闭自动提交:

consumerConfig.Consumer.Offsets.AutoCommit.Enable = false  // 禁用自动提交,改为手动

第二步:消费逻辑中添加如下代码,手动提交模式下,也需要先进行标记,在进行commit

session.MarkMessage(msg,"")
session.Commit()

完整代码可以到github上下载并进行验证!

总结

本文我们主要说明了两个知识点:

日常业务开发中,很多公司都喜欢拿消息队列进行解耦,那么你就要注意了,使用Kafka做消息队列无法保证数据不丢失,需要我们自己手动配置补偿,别忘记了,要不又是一场P0事故。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8