PingCAP 故障注入利器 fail-rs

284次阅读  |  发布于3年以前

年初分享过[聊聊 Go failpoint 使用] ,感兴趣的可以看看看这篇文章

Failpoints 是一个允许在运行时注入错误或是其它行为的工具,主要用于测试目的,包括 ut 单测,集成压测等等。测试的内容包括状态机错误,磁盘错误,网络 IO 延迟

可以注入的行为有:panic, early returns, sleeping 等等,注入的行为可以通过环境变量或代码进行控制。一般推荐用 http 或集成公司的配置平台,触发规则可以是次数,概率或是两种的结合

入门案例

首先配置依赖,Cargo.toml

[dependencies]
fail = "0.4"

我们依赖 0.4 版本

use fail::{fail_point, FailScenario};

fn do_fallible_work() {
    fail_point!("read-dir");
    println!("mock working now");
}

fn main() {
    let scenario = FailScenario::setup();
    do_fallible_work();
    scenario.teardown();
    println!("done");
}

do_fallible_work 函数只做两件事情,执行 read-dir 注入点,打印消息用于模拟函数处理请求

$ FAILPOINTS=read-dir="panic" cargo run
mock working now
done

通过环境变量注入 panic 语句,条件编译默认没有开启,所以正常输出

$ FAILPOINTS=read-dir="panic" cargo run --features fail/failpoints
mock working now
thread 'main' panicked at 'failpoint read-dir panic', /Users/zerun.dong/.cargo/registry/src/github.com-1ecc6299db9ec823/fail-0.4.0/src/lib.rs:488:25
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

cargo 指定 --features fail/failpoints, 发生 Panic 符合预期

FAILPOINTS=read-dir="sleep(2000)" cargo run --features fail/failpoints

当然我们也可以指定其它行为,比如 sleep(2000) 休眠 2 秒

use fail::{fail_point, FailScenario};
use std::io;

fn do_fallible_work() -> io::Result<()>{
    println!("mock working now");
    fail_point!("read-dir", |_| {
        Err(io::Error::new(io::ErrorKind::PermissionDenied, "error"))
    });
    Ok(())
}

fn main() -> io::Result<()> {
    let scenario = FailScenario::setup();
    do_fallible_work()?;
    do_fallible_work()?;
    scenario.teardown();
    println!("done");
    Ok(())
}

这是测试提前返回 early return 的案例,需要使用闭包来封装 error

$ FAILPOINTS=read-dir=return cargo run --features fail/failpoints
mock working now
Error: Custom { kind: PermissionDenied, error: "error" }

上面是普通用法,也可以指定多个 action

$ FAILPOINTS=read-dir="1*sleep(2000)->return" cargo run --features fail/failpoints
mock working now
mock working now
Error: Custom { kind: PermissionDenied, error: "error" }

"1*sleep(2000)->return" 表示第一次休眠 2 秒,然后第二次时提前返回。关于更多高级用法,请参考官网 https://docs.rs/fail

零性能消耗

最重要的要求是:集成 Failpoint 的代码,在线上正式环境运行时,要做到零性能消耗

func test() {
    failpoint.Inject("testValue", func(v failpoint.Value) {
        fmt.Println(v)
    })
}

这是 go 测试代码,failpoint.Injectmarker 函数,参数是名称和闭包

// failpoint.Inject("fail-point-name", func(_ failpoint.Value) (...){}
func Inject(fpname string, fpbody interface{}) {}

由于 Inject 是空函数体,编译时会被优化掉,所以运行时零性能消耗。当线下测试时,需要执行 failpoint-ctl 将所有 marker 函数转化成注入函数

func test() {
 if v, _err_ := failpoint.Eval(_curpkg_("testValue")); _err_ == nil {
  fmt.Println(v)
 }
}

上面是转换后的代码,原理不难,解析 AST 替换语法树。那么 rust 如何实现呢?答案是 macro 宏 + 条件编译

/// Define a fail point (disabled, see `failpoints` feature).
#[macro_export]
#[cfg(not(feature = "failpoints"))]
macro_rules! fail_point {
    ($name:expr, $e:expr) => {{}};
    ($name:expr) => {{}};
    ($name:expr, $cond:expr, $e:expr) => {{}};
}

当 cargo build 编译时未指定 failpints feature, fail_point 宏对应空实现

#[cfg(feature = "failpoints")]
macro_rules! fail_point {
    ($name:expr) => {{
        $crate::eval($name, |_| {
            panic!("Return is not supported for the fail point \"{}\"", $name);
        });
    }};
    ($name:expr, $e:expr) => {{
        if let Some(res) = $crate::eval($name, $e) {
            return res;
        }
    }};
    ($name:expr, $cond:expr, $e:expr) => {{
        if $cond {
            fail_point!($name, $e);
        }
    }};
}

指定 feature 时,对应上面的宏实现,编译期展开成相应的逻辑代码。fail_point 宏有三种形式,模式匹配到不同的参数表达式 (designators) 对应不同代码块

实现原理

1.注册中心

/// Registry with failpoints configuration.
type Registry = HashMap<String, Arc<FailPoint>>;

#[derive(Debug, Default)]
struct FailPointRegistry {
    // TODO: remove rwlock or store *mut FailPoint
    registry: RwLock<Registry>,
}

lazy_static::lazy_static! {
    static ref REGISTRY: FailPointRegistry = FailPointRegistry::default();
    static ref SCENARIO: Mutex<&'static FailPointRegistry> = Mutex::new(&REGISTRY);
}

注册中心 Registry 是 HashMap 类型,key 是上面测试例子的 name, value 是 Arc<Failpoint> 类型,[Arc 用于并发环境下共享所有权]

struct FailPoint {
    pause: Mutex<bool>,
    pause_notifier: Condvar,
    actions: RwLock<Vec<Action>>,
    actions_str: RwLock<String>,
}

pause 表示是否暂停,pause_notifier 用于暂停通知,actions 是一个数组,因为一个 fail_point 注入可以有多个动作,actions_str 是表示任务的字符串,通过 from_str 转化成 action 结构体

2.生成任务

FailScenario::setup() 通过获取 FAILPOINTS 环境变量来初始化注入动作,暂时不支持通过 http 方式

解析后通过 set 函数将多个注入动作解析,注册到上文提到的 Registry

fn set(
    registry: &mut HashMap<String, Arc<FailPoint>>,
    name: String,
    actions: &str,
) -> Result<(), String> {
    let actions_str = actions;
    // `actions` are in the format of `failpoint[->failpoint...]`.
    let actions = actions
        .split("->")
        .map(Action::from_str)
        .collect::<Result<_, _>>()?;
    // Please note that we can't figure out whether there is a failpoint named `name`,
    // so we may insert a failpoint that doesn't exist at all.
    let p = registry
        .entry(name)
        .or_insert_with(|| Arc::new(FailPoint::new()));
    p.set_actions(actions_str, actions);
    Ok(())
}

这里面用 Action::from_str 将字符串解析成 Action

#[derive(Clone, Debug, PartialEq)]
enum Task {
    /// Do nothing.
    Off,
    /// Return the value.
    Return(Option<String>),
    /// Sleep for some milliseconds.
    Sleep(u64),
    /// Panic with the message.
    Panic(Option<String>),
    /// Print the message.
    Print(Option<String>),
    /// Sleep until other action is set.
    Pause,
    /// Yield the CPU.
    Yield,
    /// Busy waiting for some milliseconds.
    Delay(u64),
    /// Call callback function.
    Callback(SyncCallback),
}

#[derive(Debug)]
struct Action {
    task: Task,
    freq: f32,
    count: Option<AtomicUsize>,
}

Action 类型都不一样,freq 控制频率,count 控制触发次数

3.触发任务

大前提肯定是条件编译打开了 failpoint, 直接看 macro 实现

pub fn eval<R, F: FnOnce(Option<String>) -> R>(name: &str, f: F) -> Option<R> {
    let p = {
        let registry = REGISTRY.registry.read().unwrap();
        match registry.get(name) {
            None => return None,
            Some(p) => p.clone(),
        }
    };
    p.eval(name).map(f)
}

逻辑比较简单,从 Registry 注册中心 map 找到对应 failpoint, 然后调用 failpoint.eval 函数,并且针对所有返回值执行闭包 f (如果有值)

#[cfg_attr(feature = "cargo-clippy", allow(clippy::option_option))]
fn eval(&self, name: &str) -> Option<Option<String>> {
    let task = {
        let actions = self.actions.read().unwrap();
        match actions.iter().filter_map(Action::get_task).next() {
            Some(Task::Pause) => {
                let mut guard = self.pause.lock().unwrap();
                *guard = true;
                loop {
                    guard = self.pause_notifier.wait(guard).unwrap();
                    if !*guard {
                        break;
                    }
                }
                return None;
            }
            Some(t) => t,
            None => return None,
        }
    };

    match task {
        Task::Off => {}
        Task::Return(s) => return Some(s),
        Task::Sleep(t) => thread::sleep(Duration::from_millis(t)),
        Task::Panic(msg) => match msg {
            Some(ref msg) => panic!("{}", msg),
            None => panic!("failpoint {} panic", name),
        },
        Task::Print(msg) => match msg {
            Some(ref msg) => log::info!("{}", msg),
            None => log::info!("failpoint {} executed.", name),
        },
        Task::Pause => unreachable!(),
        Task::Yield => thread::yield_now(),
        Task::Delay(t) => {
            let timer = Instant::now();
            let timeout = Duration::from_millis(t);
            while timer.elapsed() < timeout {}
        }
        Task::Callback(f) => {
            f.run();
        }
    }
    None
}

eval 函数不难,首先调用 get_task 获取要执行的 Action, 这里 Pause 动作单独处理,其它的通过 match 模式匹配。同时也能看到,如果 Return 不指定闭包 f, 那么返回值是 Some(""), 触发 macro 的默认 panic 闭包

fn get_task(&self) -> Option<Task> {
  use rand::Rng;

  if let Some(ref cnt) = self.count {
      let c = cnt.load(Ordering::Acquire);
      if c == 0 {
          return None;
      }
  }
  if self.freq < 1f32 && !rand::thread_rng().gen_bool(f64::from(self.freq)) {
      return None;
  }
  if let Some(ref ref_cnt) = self.count {
      let mut cnt = ref_cnt.load(Ordering::Acquire);
      loop {
          if cnt == 0 {
              return None;
          }
          let new_cnt = cnt - 1;
          match ref_cnt.compare_exchange_weak(
              cnt,
              new_cnt,
              Ordering::AcqRel,
              Ordering::Acquire,
          ) {
              Ok(_) => break,
              Err(c) => cnt = c,
          }
      }
  }
  Some(self.task.clone())
}

get_task 先判断执行次数,如果为 0 返回空。然后判断频率,如果没有触发返回空,最后再判断一次计数,并 cas 更新。这里 count 计数字段类型是 Option<AtomicUsize>, 如果不指定次数默认无限制

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8