DataVisor风控架构设计与OpenResty实战

359次阅读  |  发布于3年以前

导读:本文主要从实用的角度,给大家讲解一下DataVisor的风控架构,以及在风控架构中如何使用OpenResty。

01

风控业务痛点

今天主要围绕以下5个风控通点,详细讲解DataVisor的处理方案。

02

OpenResty介绍

1. OpenResty是什么

OpenResty是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。

2. 为什么使用OpenResty

业内大多使用OpenResty做为流量接入网关, K8S ingress等。如开源的 Kong,APISIX 等优秀的网关均是基于OpenResty实现的。而我们不仅将OpenResty做为网关承接业务流量,也使用OpenResty做业务逻辑开发。

3. OpenResty优势:

4. OpenResty优异的GC性能

线上性能截图展示:p50(绿色线)一般在2-3ms,比较稳定。P90(黄色线)在稍高的5-6ms,p99在p90高出2-3ms,多出的不多。从图中看出没有大的GC抖动,没有大延时。可以解决风控系统低延迟的业务痛点。

03

风控查询裂变

1. 典型的金融风控查询逻辑

OpenResty使用capture调用内部接口,性能消耗较低,类似于调用C函数的性能。使用cosocket调用外部接口,支持多种连接。可以解决风控系统业务逻辑复杂的痛点。

2. OpenResty的capture_multi & cosocket

capture_multi:

对于没有依赖关系的step1、step2、step3查询,可以并发查询。

cosocket:

04

快速应对新型的攻击手段:脚本热加载

1. 脚本热加载

部署OpenResty实现业务过滤,Metadb存储策略(比如:同设备登录用户超过3个,就拦截或二次认证)。策略配置平台调用Lua脚本生成器,并把生成的Lua脚本写入Metadb,然后可以向OpenRestry发起指令。整个过程无需重启,指令实时生效。可以解决风控系统策略变化快的痛点。

可以配置灰度发布或预发布。可以发指令给OpenRestry,使其只在其中一个worker进程中运行新策略,使用线上真实流量测试策略是否生效。

可以支持离线数据回放。把离线历史数据导入数据库,进行历史数据回放,查看策略执行效果。

2. OpenResty 动态脚本配置后台

‍‍‍‍‍‍‍‍‍‍‍‍‍选择API,选择APPKey或者某个用户,填写Lua脚本,点击创建就生成配置。点击发布后,就在OpenResty中生效了可以选择全量发布或灰度发布。

05

自动熔断&快速恢复

1. DataVisor自动熔断恢复系统

风控系统如果出现超出预期的拦截量误伤,需要尽快自我熔断。

进入OpenRestry熔断系统后,进入不同后端服务,如果出现异常情况就把流量导入YesBox,YesBox只对流量做接收然后放过。使用Prometheous、Altermanager、Grafana监控业务。配置熔断策略导入Altermanager,当达到熔断阈值时,Altermanager会向OpenResty发指令,秒级响应切换流量到YesBox。在灰度发布中,可以对已发布的服务进程,进行熔断处理。

2. DataVisor自动熔断恢复系统

2个节点的集群,在时间18:17,手动触发某一节点异常,该节点请求迅速跌至0,会在一段时间内无请求,中间只有一些探测流量,在18:30时,服务开始恢复,流量开始上升,恢复至正常流量。给风控系统多一层保障。

06

单体应用还是微服务

1. 单体应用 VS 微服务

① 单体应用

单体应用优点:

单体应用缺点:

② 微服务

微服务优点:

微服务缺点:

2. DataVisor是一种基于OpenResty的“微服务”

和Ngix类似,每个接口都是一个location,将相关的逻辑服务(比如业务1的逻辑接口)放在一起,包装成假想的业务逻辑server块1。将不同的业务打包成业务逻辑server块2、3、4,不同业务逻辑server块可以运行在同一个端口上,使用capture内部调用,实现内部微服务调用。如果需要根据业务分不同server,比如server1和server2,可以通过本机接口调用,节省网络耗时和cpu网络调度,如果需要数据共享,可以通过进程间内存共享,比如通过redis、管道、订阅发布。这样可以单机实现类似分布式模式。

优点:

缺点:一个实例挂了,所有业务逻辑都挂了。

07

水平切分与垂直切分

水平切分按逻辑层。不同业务垂直切分,但部分数据会共享。

08

DataVisor 设备指纹产品系统架构演进

1. DataVisor 设备指纹产品架构 V1

有网关、服务器、数据库、消息收发。

2. DataVisor 设备指纹产品架构 V2

蓝色部分继承自V1中的内容,其他是V2新增内容。Pika代替cassandra,是因为性能更好。可以进行水平和垂直切分。Kafka及右侧,是分析模块,日志收集上面是稳定性保障模块。

09

下一代软件架构 Service Mesh

1. DataVisor 设备指纹产品架构 V3 Service Mesh?

2. DataVisor 设备指纹产品架构 V3 OpenResty Sidecar

特权代理(privileged agent),有root权限,给它fork一个sidecar功能的进程,和其他进程交互连接、请求数据等,和其他worker进程交互也会很方便,比如共享内存、信号量来实现不同worker间的数据通信。

10

我的架构师感悟

从ToB的角度:

懂业务 + 懂技术 + 懂客户 = 合格的架构师

学会做减法比学会做加法更有用

高性能、高可用、易扩展、低成本要牢记在心,让产品没有后顾之忧

今天的分享就到这里,谢谢大家。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8