面试必备:虾皮服务端15连问

367次阅读  |  发布于2年以前

前言

最近有位读者去虾皮面试啦,分享一下面试的真题~

1 . 排序链表

2 . 对称与非对称加密算法的区别

3 . TCP如何保证可靠性

4 . 聊聊五种IO模型

5 . hystrix 工作原理

6 . 延时场景处理

7 . https请求过程

8 . 聊聊事务隔离级别,以及可重复读实现原理

9 . 聊聊索引在哪些场景下会失效?

10 . 什么是虚拟内存

11 . 排行榜的实现,比如高考成绩排序

12 . 分布式锁实现

13 . 聊聊零拷贝

14 . 聊聊synchronized

15 . 分布式ID生成方案

1 . 排序链表

给你链表的头结点head ,请将其按升序排列并返回排序后的链表 。

实例1:

输入:head = [4,2,1,3]
输出:[1,2,3,4]

实例2:

输入:head = [-1,5,3,4,0]
输出:[-1,0,3,4,5]

这道题可以用双指针+归并排序算法解决,主要以下四个步骤

  1. 快慢指针法,遍历链表找到中间节点
  2. 中间节点切断链表
  3. 分别用归并排序排左右子链表
  4. 合并子链表

完整代码如下:

class Solution {
    public ListNode sortList(ListNode head) {
        //如果链表为空,或者只有一个节点,直接返回即可,不用排序
        if (head == null || head.next == null)
            return head;

        //快慢指针移动,以寻找到中间节点
        ListNode slow = head;
        ListNode fast = head;
        while(fast.next!=null && fast.next.next !=null){
          fast = fast.next.next;
          slow = slow.next;
        }
        //找到中间节点,slow节点的next指针,指向mid
        ListNode mid = slow.next;
        //切断链表
        slow.next = null;

        //排序左子链表
        ListNode left = sortList(head);
        //排序左子链表
        ListNode right = sortList(mid);

        //合并链表
        return merge(left,right);
    }

    public ListNode merge(ListNode left, ListNode right) {
       ListNode head = new ListNode(0);
       ListNode temp = head;
       while (left != null && right != null) {
           if (left.val <= right.val) {
                temp.next = left;
                left = left.next;
            } else {
                temp.next = right;
                right = right.next;
            }
            temp = temp.next;
        }
        if (left != null) {
            temp.next = left;
        } else if (right != null) {
            temp.next = right;
        }
        return head.next;
    }
}

2.对称与非对称加密算法的区别

先复习一下相关概念:

对称加密算法:加密和解密使用相同密钥的加密算法。常见的对称加密算法有AES、3DES、DES、RC5、RC6等。

非对称加密算法:非对称加密算法需要两个密钥(公开密钥和私有密钥)。公钥与私钥是成对存在的,如果用公钥对数据进行加密,只有对应的私钥才能解密。主要的非对称加密算法有:RSA、Elgamal、DSA、D-H、ECC

3 . TCP如何保证可靠性

4 . 聊聊五种IO模型

4.1 阻塞IO 模型

假设应用程序的进程发起IO调用,但是如果内核的数据还没准备好的话,那应用程序进程就一直在阻塞等待,一直等到内核数据准备好了,从内核拷贝到用户空间,才返回成功提示,此次IO操作,称之为阻塞IO。

4.2 非阻塞IO模型

如果内核数据还没准备好,可以先返回错误信息给用户进程,让它不需要等待,而是通过轮询的方式再来请求。这就是非阻塞IO,流程图如下:

4.3 IO多路复用模型

IO多路复用之select

应用进程通过调用select函数,可以同时监控多个fd,在select函数监控的fd中,只要有任何一个数据状态准备就绪了,select函数就会返回可读状态,这时应用进程再发起recvfrom请求去读取数据。

select有几个缺点:

IO多路复用之epoll

为了解决select存在的问题,多路复用模型epoll诞生,它采用事件驱动来实现,流程图如下:

epoll先通过epoll_ctl()来注册一个fd(文件描述符),一旦基于某个fd就绪时,内核会采用回调机制,迅速激活这个fd,当进程调用epoll_wait()时便得到通知。这里去掉了遍历文件描述符的坑爹操作,而是采用监听事件回调的机制。这就是epoll的亮点。

4.4 IO模型之信号驱动模型

信号驱动IO不再用主动询问的方式去确认数据是否就绪,而是向内核发送一个信号(调用sigaction的时候建立一个SIGIO的信号),然后应用用户进程可以去做别的事,不用阻塞。当内核数据准备好后,再通过SIGIO信号通知应用进程,数据准备好后的可读状态。应用用户进程收到信号之后,立即调用recvfrom,去读取数据。

4.5 IO 模型之异步IO(AIO)

AIO实现了IO全流程的非阻塞,就是应用进程发出系统调用后,是立即返回的,但是立即返回的不是处理结果,而是表示提交成功类似的意思。等内核数据准备好,将数据拷贝到用户进程缓冲区,发送信号通知用户进程IO操作执行完毕。

流程如下:

5 . hystrix 工作原理

Hystrix 工作流程图如下:

  1. 构建命令

Hystrix 提供了两个命令对象:HystrixCommand和HystrixObservableCommand,它将代表你的一个依赖请求任务,向构造函数中传入请求依赖所需要的参数。

2 . 执行命令

有四种方式执行Hystrix命令。分别是:

3 . 检查响应是否被缓存

如果启用了 Hystrix缓存,任务执行前将先判断是否有相同命令执行的缓存。如果有则直接返回包含缓存响应的Observable;如果没有缓存的结果,但启动了缓存,将缓存本次执行结果以供后续使用。

4 . 检查回路器是否打开 回路器(circuit-breaker)和保险丝类似,保险丝在发生危险时将会烧断以保护电路,而回路器可以在达到我们设定的阀值时触发短路(比如请求失败率达到50%),拒绝执行任何请求。

如果回路器被打开,Hystrix将不会执行命令,直接进入Fallback处理逻辑。

5 . 检查线程池/信号量/队列情况 Hystrix 隔离方式有线程池隔离和信号量隔离。当使用Hystrix线程池时,Hystrix 默认为每个依赖服务分配10个线程,当10个线程都繁忙时,将拒绝执行命令,,而是立即跳到执行fallback逻辑。

6 . 执行具体的任务 通过HystrixObservableCommand.construct() 或者 HystrixCommand.run() 来运行用户真正的任务。

7 . 计算回路健康情况 每次开始执行command、结束执行command以及发生异常等情况时,都会记录执行情况,例如:成功、失败、拒绝和超时等指标情况,会定期处理这些数据,再根据设定的条件来判断是否开启回路器。

8 . 命令失败时执行Fallback逻辑 在命令失败时执行用户指定的 Fallback 逻辑。上图中的断路、线程池拒绝、信号量拒绝、执行执行、执行超时都会进入Fallback处理。

9 . 返回执行结果 原始对象结果将以Observable形式返回,在返回给用户之前,会根据调用方式的不同做一些处理。

6 . 延时场景处理

日常开发中,我们经常遇到这种业务场景,如:外卖订单超30分钟未支付,则自动取消订单;用户注册成功15分钟后,发短信消息通知用户等等。这就是延时任务处理场景。针对此类场景我们主要有以下几种处理方案:

7.https请求过程

http请求流程

  1. 用户在浏览器里输入一个https网址,然后连接到server的443端口。
  2. 服务器必须要有一套数字证书,可以自己制作,也可以向组织申请,区别就是自己颁发的证书需要客户端验证通过。这套证书其实就是一对公钥和私钥。
  3. 服务器将自己的数字证书(含有公钥)发送给客户端。
  4. 客户端收到服务器端的数字证书之后,会对其进行检查,如果不通过,则弹出警告框。如果证书没问题,则生成一个密钥(对称加密),用证书的公钥对它加密。
  5. 客户端会发起HTTPS中的第二个HTTP请求,将加密之后的客户端密钥发送给服务器。
  6. 服务器接收到客户端发来的密文之后,会用自己的私钥对其进行非对称解密,解密之后得到客户端密钥,然后用客户端密钥对返回数据进行对称加密,这样数据就变成了密文。
  7. 服务器将加密后的密文返回给客户端。
  8. 客户端收到服务器发返回的密文,用自己的密钥(客户端密钥)对其进行对称解密,得到服务器返回的数据。

8 . 聊聊事务隔离级别,以及可重复读实现原理

8.1 数据库四大隔离级别

为了解决并发事务存在的脏读、不可重复读、幻读等问题,数据库大叔设计了四种隔离级别。分别是读未提交,读已提交,可重复读,串行化(Serializable)。

四大隔离级别,都会存在哪些并发问题

隔离级别 脏读 不可重复读 幻读
读未提交
读已提交 ×
可重复读 × ×
串行化 × × ×

8.2 Read View可见性规则

变量 描述
m_ids 当前系统中那些活跃(未提交)的读写事务ID, 它数据结构为一个List。
max_limit_id 表示生成Read View时,系统中应该分配给下一个事务的id值。
min_limit_id 表示在生成Read View时,当前系统中活跃的读写事务中最小的事务id,即m_ids中的最小值。
creator_trx_id 创建当前Read View的事务ID

Read View的可见性规则如下:

  1. 如果数据事务ID trx_id < min_limit_id,表明生成该版本的事务在生成Read View前,已经提交(因为事务ID是递增的),所以该版本可以被当前事务访问。
  2. 如果trx_id>= max_limit_id,表明生成该版本的事务在生成Read View后才生成,所以该版本不可以被当前事务访问。
  3. 如果 min_limit_id =<trx_id< max_limit_id,需要分3种情况讨论
  • 1)如果m_ids包含trx_id,则代表Read View生成时刻,这个事务还未提交,但是如果数据的trx_id等于creator_trx_id的话,表明数据是自己生成的,因此是可见的。
  • 2)如果m_ids包含trx_id,并且trx_id不等于creator_trx_id,则Read View生成时,事务未提交,并且不是自己生产的,所以当前事务也是看不见的;
  • 3)如果m_ids不包含trx_id,则说明你这个事务在Read View生成之前就已经提交了,修改的结果,当前事务是能看见的。

8.3 可重复读实现原理

数据库是通过加锁实现隔离级别的,比如,你想一个人静静,不被别人打扰,你可以把自己关在房子,并在房门上加上一把锁!串行化隔离级别就是加锁实现的。但是如果频繁加锁,性能会下降。因此设计数据库的大叔想到了MVCC

可重复读的实现原理就是MVCC多版本并发控制。在一个事务范围内,两个相同的查询,读取同一条记录,却返回了不同的数据,这就是不可重复读。可重复读隔离级别,就是为了解决不可重复读问题。

查询一条记录,基于MVCC,是怎样的流程呢?

  1. 获取事务自己的版本号,即事务ID
  2. 获取Read View
  3. 查询得到的数据,然后Read View中的事务版本号进行比较。
  4. 如果不符合Read View的可见性规则, 即就需要Undo log中历史快照;
  5. 最后返回符合规则的数据

InnoDB 实现MVCC,是通过Read View+ Undo Log实现的,Undo Log保存了历史快照,Read View可见性规则帮助判断当前版本的数据是否可见。

可重复读(RR)隔离级别,是如何解决不可重复读问题的?

假设存在事务A和B,SQL执行流程如下

在可重复读(RR)隔离级别下,一个事务里只会获取一次read view,都是副本共用的,从而保证每次查询的数据都是一样的。

假设当前有一张core_user表,插入一条初始化数据,如下:

基于MVCC,我们来看看执行流程

  1. A开启事务,首先得到一个事务ID为100
  2. B开启事务,得到事务ID为101
  3. 事务A生成一个Read View,read view对应的值如下
变量
m_ids 100,101
max_limit_id 102
min_limit_id 100
creator_trx_id 100

然后回到版本链:开始从版本链中挑选可见的记录:

由图可以看出,最新版本的列name的内容是孙权,该版本的trx_id值为100。开始执行read view可见性规则校验:

min_limit_id(100)=<trx_id(100)<102;
creator_trx_id = trx_id =100;

由此可得,trx_id=100的这个记录,当前事务是可见的。所以查到是name为孙权的记录。

4 . 事务B进行修改操作,把名字改为曹操。把原数据拷贝到undo log,然后对数据进行修改,标记事务ID和上一个数据版本在undo log的地址。

5 . 事务B提交事务

6 . 事务A再次执行查询操作,因为是RR(可重复读)隔离级别,因此会复用老的Read View副本,Read View对应的值如下

变量
m_ids 100,101
max_limit_id 102
min_limit_id 100
creator_trx_id 100

然后再次回到版本链:从版本链中挑选可见的记录:

从图可得,最新版本的列name的内容是曹操,该版本的trx_id值为101。开始执行read view可见性规则校验:

min_limit_id(100)=<trx_id(101)<max_limit_id(102);
因为m_ids{100,101}包含trx_id(101),
并且creator_trx_id (100) 不等于trx_id(101)

所以,trx_id=101这个记录,对于当前事务是不可见的。这时候呢,版本链roll_pointer跳到下一个版本,trx_id=100这个记录,再次校验是否可见:

min_limit_id(100)=<trx_id(100)< max_limit_id(102);
因为m_ids{100,101}包含trx_id(100),
并且creator_trx_id (100) 等于trx_id(100)

所以,trx_id=100这个记录,对于当前事务是可见的,所以两次查询结果,都是name=孙权的那个记录。即在可重复读(RR)隔离级别下,复用老的Read View副本,解决了不可重复读的问题。

9 . 聊聊索引在哪些场景下会失效?

  1. 查询条件包含or,可能导致索引失效2. 如何字段类型是字符串,where时一定用引号括起来,否则索引失效
  2. like通配符可能导致索引失效。
  3. 联合索引,查询时的条件列不是联合索引中的第一个列,索引失效。
  4. 在索引列上使用mysql的内置函数,索引失效。
  5. 对索引列运算(如,+、-、*、/),索引失效。
  6. 索引字段上使用(!= 或者 < >,not in)时,可能会导致索引失效。
  7. 索引字段上使用is null, is not null,可能导致索引失效。
  8. 左连接查询或者右连接查询查询关联的字段编码格式不一样,可能导致索引失效。
  9. mysql估计使用全表扫描要比使用索引快,则不使用索引。

10 . 什么是虚拟内存

虚拟内存,是虚拟出来的内存,它的核心思想就是确保每个程序拥有自己的地址空间,地址空间被分成多个块,每一块都有连续的地址空间。同时物理空间也分成多个块,块大小和虚拟地址空间的块大小一致,操作系统会自动将虚拟地址空间映射到物理地址空间,程序只需关注虚拟内存,请求的也是虚拟内存,真正使用却是物理内存。

现代操作系统使用虚拟内存,即虚拟地址取代物理地址,使用虚拟内存可以有2个好处:

零拷贝实现思想,就利用了虚拟内存这个点:多个虚拟内存可以指向同一个物理地址,可以把内核空间和用户空间的虚拟地址映射到同一个物理地址,这样的话,就可以减少IO的数据拷贝次数啦,示意图如下:

11 . 排行榜的实现,比如高考成绩排序

排行版的实现,一般使用redis的zset数据类型。

zadd key score member [score member ...],zrank key member

实现demo如下:

12.分布式锁实现

分布式锁,是控制分布式系统不同进程共同访问共享资源的一种锁的实现。秒杀下单、抢红包等等业务场景,都需要用到分布式锁,我们项目中经常使用Redis作为分布式锁。

选了Redis分布式锁的几种实现方法,大家来讨论下,看有没有啥问题哈。

12.1 命令setnx + expire分开写

if(jedis.setnx(key,lock_value) == 1){ //加锁
    expire(key,100); //设置过期时间
    try {
        do something  //业务请求
    }catch(){
  }
  finally {
       jedis.del(key); //释放锁
    }
}

如果执行完setnx加锁,正要执行expire设置过期时间时,进程crash掉或者要重启维护了,那这个锁就“长生不老”了,别的线程永远获取不到锁啦,所以分布式锁不能这么实现。

12.2 setnx + value值是过期时间

long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间
String expiresStr = String.valueOf(expires);

// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(key, expiresStr) == 1) {
        return true;
} 
// 如果锁已经存在,获取锁的过期时间
String currentValueStr = jedis.get(key);

// 如果获取到的过期时间,小于系统当前时间,表示已经过期
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {

     // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
    String oldValueStr = jedis.getSet(key_resource_id, expiresStr);

    if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
         // 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
         return true;
    }
}

//其他情况,均返回加锁失败
return false;
}

笔者看过有开发小伙伴就是这么实现分布式锁的,但是这种方案也有这些缺点:

12.3 set的扩展命令(set ex px nx)(注意可能存在的问题)

if(jedis.set(key, lock_value, "NX", "EX", 100s) == 1){ //加锁
    try {
        do something  //业务处理
    }catch(){
  }
  finally {
       jedis.del(key); //释放锁
    }
}

这个方案可能存在这样的问题:

12.4 set ex px nx + 校验唯一随机值,再删除

if(jedis.set(key, uni_request_id, "NX", "EX", 100s) == 1){ //加锁
    try {
        do something  //业务处理
    }catch(){
  }
  finally {
       //判断是不是当前线程加的锁,是才释放
       if (uni_request_id.equals(jedis.get(key))) {
        jedis.del(key); //释放锁
        }
    }
}

在这里,判断当前线程加的锁和释放锁是不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。

一般也是用lua脚本代替。lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then 
   return redis.call('del',KEYS[1]) 
else
   return 0
end;

这种方式比较不错了,一般情况下,已经可以使用这种实现方式。但是存在锁过期释放了,业务还没执行完的问题(实际上,估算个业务处理的时间,一般没啥问题了)。

12.5 Redisson

分布式锁可能存在锁过期释放,业务没执行完的问题。有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson就解决了这个分布式锁问题。我们一起来看下Redisson底层原理是怎样的吧:

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。

13 . 零拷贝

零拷贝就是不需要将数据从一个存储区域复制到另一个存储区域。它是指在传统IO模型中,指CPU拷贝的次数为0。它是IO的优化方案

13.1 传统IO流程

流程图如下:

从流程图可以看出,传统IO的读写流程,包括了4次上下文切换(4次用户态和内核态的切换),4次数据拷贝(两次CPU拷贝以及两次的DMA拷贝)。

13.2 mmap+write实现的零拷贝

mmap 的函数原型如下:

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

mmap使用了虚拟内存,可以把内核空间和用户空间的虚拟地址映射到同一个物理地址,从而减少数据拷贝次数!

mmap+write实现的零拷贝流程如下:

可以发现,mmap+write实现的零拷贝,I/O发生了4次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝

mmap是将读缓冲区的地址和用户缓冲区的地址进行映射,内核缓冲区和应用缓冲区共享,所以节省了一次CPU拷贝‘’并且用户进程内存是虚拟的,只是映射到内核的读缓冲区,可以节省一半的内存空间。

sendfile实现的零拷贝

sendfile是Linux2.1内核版本后引入的一个系统调用函数,API如下:

ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

sendfile表示在两个文件描述符之间传输数据,它是在操作系统内核中操作的,避免了数据从内核缓冲区和用户缓冲区之间的拷贝操作,因此可以使用它来实现零拷贝。

sendfile实现的零拷贝流程如下:

sendfile实现的零拷贝

  1. 用户进程发起sendfile系统调用,上下文(切换1)从用户态转向内核态
  2. DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  3. CPU将读缓冲区中数据拷贝到socket缓冲区
  4. DMA控制器,异步把数据从socket缓冲区拷贝到网卡,
  5. 上下文(切换2)从内核态切换回用户态,sendfile调用返回。

可以发现,sendfile实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝。那能不能把CPU拷贝的次数减少到0次呢?有的,即带有DMA收集拷贝功能的sendfile

sendfile+DMA scatter/gather实现的零拷贝

linux 2.4版本之后,对sendfile做了优化升级,引入SG-DMA技术,其实就是对DMA拷贝加入了scatter/gather操作,它可以直接从内核空间缓冲区中将数据读取到网卡。使用这个特点搞零拷贝,即还可以多省去一次CPU拷贝

sendfile+DMA scatter/gather实现的零拷贝流程如下:

  1. 用户进程发起sendfile系统调用,上下文(切换1)从用户态转向内核态
  2. DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  3. CPU把内核缓冲区中的文件描述符信息(包括内核缓冲区的内存地址和偏移量)发送到socket缓冲区
  4. DMA控制器根据文件描述符信息,直接把数据从内核缓冲区拷贝到网卡
  5. 上下文(切换2)从内核态切换回用户态,sendfile调用返回。

可以发现,sendfile+DMA scatter/gather实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及2次数据拷贝。其中2次数据拷贝都是包DMA拷贝。这就是真正的 零拷贝(Zero-copy) 技术,全程都没有通过CPU来搬运数据,所有的数据都是通过DMA来进行传输的。

14 . synchronized

synchronized是Java中的关键字,是一种同步锁。synchronized关键字可以作用于方法或者代码块。

一般面试时。可以这么回答:

14.1 monitorenter、monitorexit、ACC_SYNCHRONIZED

如果synchronized作用于代码块,反编译可以看到两个指令:monitorenter、monitorexit,JVM使用monitorenter和monitorexit两个指令实现同步;如果作用synchronized作用于方法,反编译可以看到ACCSYNCHRONIZED标记,JVM通过在方法访问标识符(flags)中加入ACCSYNCHRONIZED来实现同步功能。

14.2 monitor监视器

monitor是什么呢?操作系统的管程(monitors)是概念原理,ObjectMonitor是它的原理实现。

在Java虚拟机(HotSpot)中,Monitor(管程)是由ObjectMonitor实现的,其主要数据结构如下:

 ObjectMonitor() {
    _header       = NULL;
    _count        = 0; // 记录个数
    _waiters      = 0,
    _recursions   = 0;
    _object       = NULL;
    _owner        = NULL;
    _WaitSet      = NULL;  // 处于wait状态的线程,会被加入到_WaitSet
    _WaitSetLock  = 0 ;
    _Responsible  = NULL ;
    _succ         = NULL ;
    _cxq          = NULL ;
    FreeNext      = NULL ;
    _EntryList    = NULL ;  // 处于等待锁block状态的线程,会被加入到该列表
    _SpinFreq     = 0 ;
    _SpinClock    = 0 ;
    OwnerIsThread = 0 ;
  }

ObjectMonitor中几个关键字段的含义如图所示:

14.3 Java Monitor 的工作机理

14.4 对象与monitor关联

Mark Word 是用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等。

重量级锁,指向互斥量的指针。其实synchronized是重量级锁,也就是说Synchronized的对象锁,Mark Word锁标识位为10,其中指针指向的是Monitor对象的起始地址。

15 . 分布式id生成方案有哪些?什么是雪花算法?

分布式id生成方案主要有:

什么是雪花算法

雪花算法是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs。这种算法由Twitter创建,并用于推文的ID。

一个Snowflake ID有64位。

雪花算法

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8