本文开始,先提个问题:“MongoDB ObjectId() 生成的 id 是唯一的吗?”,答案在文中。
谈起分布式 ID,经常会聊到的一些方案是使用 Twitter 的 Snowflake 算法、UUID、数据库自增 ID 等。前些时间看了下 MongoDB ObjectId() 的实现原理,也不失为一种好的实现思路,正如标题所描述的,本文会给大家分享下在 MongoDB 中是如何实现的 “千万级” 分布式唯一 ID。
MongoDB 一开始的设计就是用来做为分布式数据库,插入数据时默认使用 _id 做为主键,下面这个 _id 就是 MongoDB 中开源的分布式系统 ID 算法ObjectId()
生成的。
new ObjectId("632c6d93d65f74baeb22a2c9")
关于其组成需要指出一个误区,网上很多介绍 MongoDB ObjectId() 的文章,都有这样一段描述:
// 过时的规则,现在已经不用 机器标识 + 进程号
// 一种猜测,现在大多应用容器化,在容器内有独立的进程空间,它的进程号永远可能都为 1,还有创建几台虚拟机,其中的 hostname 可能也都为 localhost
4 字节的时间戳 + 3 个字节机器标识码 + 2 个字节进程号 + 3 个字节自增数
很长一段时间我也一直这样认为,直到前些时间看了源码之后,发现中间的 3 个字节机器标识码 + 2 个字节进程号已被替换为 5 个字节的进程唯一标识,之后翻阅了 MongoDB 官方文档 描述也确实如此。
// 当前 ObjectId 实现规则
4 字节的时间戳(单位:秒) + 5 个字节的进程唯一标识 + 3 个字节自增数
这个组成规则反映出几个问题:
Math.pow(2, 24) - 1 = 16777215
个唯一 ID,因此文章开头我用了 “千万级” 描述,这已经够了,当下突破这个限制几乎不太可能。下面让我们开始实践,参考 源码https://github.com/mongodb/js-bson/blob/HEAD/src/objectid.ts 写一个最简化的 ObjectId(),真正理解它的实现原理。编程语言为 JavaScript,运行环境 Node.js。
实现会用到一些 Node.js 的系统模块 API 和运算符,每一步都会对用到的知识做一个讲解。
按照它的组成规则,分步实现,首先,创建一个自定义的类,这里我命名为 UniqueId
,并初始化一个 12 Byte 的 Buffer。
Buffer 是 Node.js 中的一个系统模块,Buffer.alloc() 按照指定字节数创建一段连续的内存空间,用来处理二进制数据,默认使用 0 进行填充,也可以指定字符进行填充,参见 API Buffer.alloc(size[, fill[, encoding]])。
const kId = Symbol('id');
class UniqueId {
constructor() {
this[kId] = UniqueId.generate()
}
get id() {
return this[kId];
}
static generate() {
const buffer = Buffer.alloc(12);
return buffer;
}
}
运行之后输出一个 0 填充的 12 Byte 的 buffer。
(new UniqueId()).id -> <Buffer 00 00 00 00 00 00 00 00 00 00 00 00>
Date.now() 获取当前时间毫秒数,除以 1000 精确到秒,通过 Math.floor() 函数向下取整,取到一个整数。
buffer.writeUInt32BE() 将一个无符号的 32 位整数以高位优先(大端写入)方式写入到 buffer 中,32 位在这里占用的是 4 Byte,offset 设置为 0(默认 offset 就是 0),将时间戳写入到 buffer 的前 4 个字节。
const kId = Symbol('id');
class UniqueId {
constructor() {
this[kId] = UniqueId.generate()
}
get id() {
return this[kId];
}
static generate() {
const buffer = Buffer.alloc(12);
// 4-byte timestamp
+ const time = Math.floor(Date.now() / 1000);
+ buffer.writeUInt32BE(time, 0);
+ return buffer;
}
}
运行之后可以看到 buffer 的前 4 个字节已被填充,对 Node.js Buffer 模块不太了解的,看到这个结果又迷惑了,buffer 里面存储的既不是二进制也不是十进制,到底是啥?
(new UniqueId()).id -> <Buffer 63 2e 90 c0 00 00 00 00 00 00 00 00>
Node.js 中的 buffer 是用来处理二进制数据的,例如下面的 “2e” 二进制为 00101110,那么二进制方式在用户这一侧看起来显然不是很方便,Node.js buffer 中我们所看到的其实是内存实际存储的值,转换为了十六进制表示(00 ~ ff)。
记住一点:“计算机底层使用的二进制,如果是用来展示通常是 10 进制,编程用的时候会采用 16 进制,内存地址编码使用的就是 16 进制。” 内存管理这块想了解更多可参考这篇文章 为什么递归会造成栈溢出?探索程序的内存管理!https://github.com/qufei1993/blog/issues/44
如果想取到存进去的时间戳,使用 buffer.readUInt32BE(offset)
方法,默认 offset 为 0,从 0 位开始读取前 4 Byte。
中间 5 Byte 没有规定实现方式,保证进程唯一就好,使用 Node.js 系统模块 crypto 提供的 randomBytes() 方法生成一个长度为 5 的随机字节。
+ const crypto = require('crypto');
+ let PROCESS_UNIQUE = null;
const kId = Symbol('id');
class UniqueId {
constructor() {
this[kId] = UniqueId.generate()
}
get id() {
return this[kId];
}
static generate() {
const buffer = Buffer.alloc(12);
// 4-byte timestamp
const time = Math.floor(Date.now() / 1000);
buffer.writeUInt32BE(time, 0);
+ // 5-byte process unique
+ if (PROCESS_UNIQUE === null) {
+ PROCESS_UNIQUE = crypto.randomBytes(5);
+ }
+ buffer[4] = PROCESS_UNIQUE[0];
+ buffer[5] = PROCESS_UNIQUE[1];
+ buffer[6] = PROCESS_UNIQUE[2];
+ buffer[7] = PROCESS_UNIQUE[3];
+ buffer[8] = PROCESS_UNIQUE[4];
return buffer;
}
}
最后 3 Byte 为自增数,是关键的一部分,在 1 秒钟内、进程标识唯一的情况下,一个 ObjectId() 能生成多少个不重复的 ID,由这 3 Byte 决定。
自增数不是简单的理解为 0、1、2... 这样依次生成的,实现步骤为:
Math.random() * 0xffffff
首先生成一个 3 Byte 的随机数做为起始值(这样也加大了产生重复的机率),声明在类的静态属性上(相当于 UniqueId.index = Math.random() * 0xffffff
,0xffffff
是一个十六进制数,等价于十进制的 16777215
。getInc()
初始的随机数都会 +1,做为当前的随机自增数 inc,并做了取余操作,可以放心这个自增数永远都不会大于 16777215
。11111111
,转为 16 进制是 0xff,转为十进制是 255。现在我们知道了 buffer 中的一个字节所表达的 10 进制是不能大于 255 的,想实现一个字节存放的数不能大于 255 一个实现是做二进制与运算,本文用的也是这种方式,举个与运算的例子:16777215 二进制表示:11111111 11111111 11111111
255(0xff)二进制表示: 00000000 00000000 11111111
与运算结果: 00000000 00000000 11111111
# 与运算是都为 1 则为 1,这里的结果最大是不会超过 255 的
buffer[11] = inc & 0xff
),同理将 inc 向右偏移 8 位与 0xff 做与运算赋值给 buffer[10],inc 向右偏移 16 位与 0xff 做与运算赋值给 buffer[9]。const crypto = require('crypto');
let PROCESS_UNIQUE = null;
const kId = Symbol('id');
class UniqueId {
+ static index = Math.floor(Math.random() * 0xffffff);
constructor() {
this[kId] = UniqueId.generate()
}
get id() {
return this[kId];
}
+ static getInc() {
+ return (UniqueId.index = (UniqueId.index + 1) % 0xffffff);
+ }
static generate() {
const buffer = Buffer.alloc(12);
// 4-byte timestamp
const time = Math.floor(Date.now() / 1000);
buffer.writeUInt32BE(time, 0);
// 5-byte process unique
if (PROCESS_UNIQUE === null) {
PROCESS_UNIQUE = crypto.randomBytes(5);
}
buffer[4] = PROCESS_UNIQUE[0];
buffer[5] = PROCESS_UNIQUE[1];
buffer[6] = PROCESS_UNIQUE[2];
buffer[7] = PROCESS_UNIQUE[3];
buffer[8] = PROCESS_UNIQUE[4];
+ // 3-byte counter
+ const inc = UniqueId.getInc();
+ buffer[11] = inc & 0xff;
+ buffer[10] = (inc >> 8) & 0xff;
+ buffer[9] = (inc >> 16) & 0xff;
+ return buffer;
}
}
以下为最终的生成结果,可以看到每个字节都被 1 个 16 进制数所填充。
(new UniqueId()).id -> <Buffer 63 33 01 c2 55 58 38 cf e0 be 75 46>
本文从理论到实践,实现了一个自定义的 UniqueId(),这是一个最简化的 MongoDB ObjectId() 实现,代码量也不多,感兴趣的可以自己实现一遍,加深理解。
文章开头提到了一个问题 “MongoDB ObjectId() 生成的 id 是唯一的吗?” 答案即是 Yes 也是 No,在 1 秒钟内且进程唯一标识不重复的情况下,根据后 3 Byte 自增数可以得到生成的最大不重复 id 为 2^24 - 1 = 16777215
个唯一 ID。
最后,留一个问题,为什么 MongoDB ObjectId() 可以不用 new 就能生成一个 ID 呢?并且显示的结果和上面自定义的 UniqueId() 也不一样,关于 MongoDB ObjectId() 还有很多玩法,下一篇介绍。
console.log(ObjectId()); // 原生 ObjectId 输出结果:new ObjectId("633304ee48d18c808c6bb23a")
console.log(new UniqueId()); // 自定义 UniqueId 输出结果:UniqueId { [Symbol(id)]: <Buffer 63 33 04 ee f0 b2 b8 1f c3 15 53 2c> }
- END -
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8