深入浅出音视频与 WebRTC

412次阅读  |  发布于2年以前

常见的音视频网络通信协议

普通直播协议

这类直播对实时性要求不那么高,使用CDN进行内容分发,会有几秒甚至十几秒的延时,主要关注画面质量、音视频是卡顿等问题,一般选用 RTMP 和 HLS 协议

基本概念

1 . RTMP

RTMP (Real Time Messaging Protocol),即“实时消息传输协议”, 它实际上并不能做到真正的实时,一般情况最少都会有几秒到几十秒的延迟,是 Adobe 公司开发的音视频数据传输的实时消息传送协议,RTMP 协议基于 TCP,包括 RTMP 基本协议及 RTMPT/RTMPS/RTMPE 等多种变种,RTMP 是目前主流的流媒体传输协议之一,对CDN支持良好,实现难度较低,是大多数直播平台的选择,不过RTMP有一个最大的不足 —— 不支持浏览器,且苹果 ios 不支持,Adobe 已停止对其更新

RTMP目前在 PC 上的使用仍然比较广泛

2 . HLS

HLS (Http Live Streaming)是由苹果公司定义的基于 HTTP 的流媒体实时传输协议,被广泛的应用于视频点播和直播领域,HLS 规范规定播放器至少下载一个 ts 切片才能播放,所以 HLS 理论上至少会有一个切片的延迟

HLS 在移动端兼容性比较好,ios就不用说了,Android现在也基本都支持 HLS 协议了,pc端如果要使用可以使用 hls.js 适配器

HLS 的原理是将整个流分为多个小的文件来下载,每次只下载若干个,服务器端会将最新的直播数据生成新的小文件,当客户端获取直播时,它通过获取最新的视频文件片段来播放,从而保证用户在任何时候连接进来时都会看到较新的内容,实现近似直播的体验;HLS 的延迟一般会高于普通的流媒体直播协议,传输内容包括两部分:一部分 M3U8 是索引文件,另一部分是 TS 文件,用来存储音视频的媒体信息

RTMP 和 HLS 如何选择

普通直播基本架构

直播 客户端 信令 服务器和 CDN 网络这三部分组成

直播 客户端主要包括音视频数据的采集、编码、推流、拉流、解码与播放功能,但实际上这些功能并不是在同一个客户端中实现的,为什么呢?因为作为主播来说,他不需要看到观众的视频或听到观众的声音,而作为观众来讲,他们与主播之间是通过文字进行交流的,不需要向主播分享自己的音视频信息

对于主播客户端来说,它可以设备的摄像头、麦克风采集数据,然后对采集到的音视频数据进行编码,最后将编码后的音视频数据推送给 CDN

对于观众客户端来说,它首先需要获取到主播房间的流媒体地址,观众进入房间后从 CDN 拉取音视频数据,并对获取到的音视频数据进行解码,最后进行音视频的渲染与播放

信令 服务器,主要用于接收信令,并根据信令处理一些和业务相关的逻辑,如创建房间、加入房间、离开房间、文字聊天等

CDN 网络,主要用于媒体数据的分发,传给它的媒体数据可以很快传送给各地的用户

实时直播协议

随着人们对实时性、互动性的要求越来越高,传统直播技术越来越满足不了人们的需求,WebRTC 技术正是为了解决人们对实时性、互动性需求而提出的新技术

3 . WebRTC

WebRTC(Web Real-Time Communication),即“网页即时通信”,WebRTC 是一个支持浏览器进行实时语音、视频对话的开源协议,目前主流浏览器都支持WebRTC,即便在网络信号一般的情况下也具备较好的稳定性,WebRTC 可以实现点对点通信,通信双方延时低,使用户无需下载安装任何插件就可以进行实时通信

在WebRTC发布之前,开发实时音视频交互应用的成本很高,需要考虑的技术问题很多,如音视频的编解码问题,数据传输问题,延时、丢包、抖动、回音的处理和消除等,如果要兼容浏览器端的实时音视频通信,还需要额外安装插件, WebRTC 大大降低了音视频开发的门槛,开发者只需要调用 WebRTC API 即可快速构建出音视频应用

下面主要通过 WebRTC 的实时通信过程来对 WebRTC 有一个大概的了解

WebRTC 音视频通信的大体过程

image.png

音视频设备检测

设备的基本原理

音频设备

音频输入设备的主要工作是采集音频数据,而采集音频数据的本质就是模数转换(A/D),即将模似信号转换成数字信号,采集到的数据再经过量化、编码,最终形成数字信号,这就是音频设备所要完成的工作

视频设备

视频设备,与音频输入设备很类似,视频设备的模数转换(A/D)模块即光学传感器, 将光转换成数字信号,即 RGB(Red、Green、Blue)数据,获得 RGB 数据后,还要通过 DSP(Digital Signal Processer)进行优化处理,如自动增强、色彩饱和等都属于这一阶段要做的事情,通过 DSP 优化处理后获得 RGB 图像,然后进行压缩、传输,而编码器一般使用的输入格式为 YUV,所以在摄像头内部还有一个专门的模块用于将 RGB 图像转为 YUV 格式的图像

那什么是 YUV 呢?

YUV 也是一种色彩编码方法,它将亮度信息(Y)与色彩信息(UV)分离,即使没有 UV 信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题(这也是 YUV 设计的初衷)相对于 RGB 颜色空间,YUV 的目的是为了编码、传输的方便,减少带宽占用和信息出错,人眼的视觉特点是对亮度更敏感,对位置、色彩相对来说不敏感,在视频编码系统中为了降低带宽,可以保存更多的亮度信息,保存较少的色差信息

获取音视频设备列表

MediaDevices.enumerateDevices()

此方法返回一个可用的媒体输入和输出设备的列表,例如麦克风,摄像机,耳机设备等

navigator.mediaDevices.enumerateDevices().then(function(deviceInfos) {
  deviceInfos.forEach(function(deviceInfo) {
    console.log(deviceInfo);
  });
})

返回的 deviceInfo 信息格式如下:

  1. 出于安全原因,除非用户已被授予访问媒体设备的权限(要想授予权限需要使用 HTTPS 请求),否则 label 字段始终为空

设备检测方法

音视频采集

基本概念

帧率表示1秒钟视频内图像的数量,一般帧率达到 10~12fps 人眼就会觉得是连贯的,帧率越高,代表着每秒钟处理的图像数量越高,因此流量会越大,对设备的性能要求也越高,所以在直播系统中一般不会设置太高的帧率,高的帧率可以得到更流畅、更逼真的动画,一般来说 30fps 就是可以接受的,但是将性能提升至 60fps 则可以明显提升交互感和逼真感,但是一般来说超过 75fps 一般就不容易察觉到有明显的流畅度提升了

WebRTC 中的“轨”借鉴了多媒体的概念,两条轨永远不会相交,“轨”在多媒体中表达的就是每条轨数据都是独立的,不会与其他轨相交,如 MP4 中的音频轨、视频轨,它们在 MP4 文件中是被分别存储的

音视频采集接口

mediaDevices.getUserMedia

const mediaStreamContrains = {
    video: true,
    audio: true
};

const promise = navigator.mediaDevices.getUserMedia(mediaStreamContrains).then(
    gotLocalMediaStream
)

const $video = document.querySelector('video');

function gotLocalMediaStream(mediaStream){
    $video.srcObject = mediaStream;
}

function handleLocalMediaStreamError(error){
    console.log('getUserMedia 接口调用出错: ', error);
}

**srcObject[1]**:属性设定或返回一个对象,这个对象提供了一个与 HTMLMediaElement 关联的媒体源,这个对象通常是 MediaStream,根据规范也可以是 MediaSource, Blob 或者 File,但对于 MediaSource, Blob 和File类型目前浏览器的兼容性不太好,所以对于这几种类型可以通过 URL.createObjectURL() 创建 URL,并将其赋值给 HTMLMediaElement.src

MediaStreamConstraints 参数,可以指定MediaStream中包含哪些类型的媒体轨(音频轨、视频轨),并且可为这些媒体轨设置一些限制

const mediaStreamContrains = {
    video: {
       frameRate: {min: 15}, // 视频的帧率最小 15 帧每秒
       width: {min: 320, ideal: 640}, // 宽度最小是 320,理想的宽度是 640
       height: {min: 480, ideal: 720},// 高度最小是 480,最理想高度是 720
       facingMode: 'user', // 优先使用前置摄像头
       deviceId: '' // 指定使用哪个设备
    },
    audio: {
       echoCancellation: true, // 对音频开启回音消除功能
       noiseSuppression: true // 对音频开启降噪功能
    }
}

浏览器实现自拍

我们知道视频是由一幅幅帧图像和一组音频构成的,所以拍照的过程其实是从连续播放的视频流(一幅幅画面)中抽取正在显示的那张画面,上面我们讲过可以通过 getUserMedia 获取到视频流,那如何从视频流中获取到正在显示的图片呢?

这里就要用到 canvas 的 drawImage[2]

const ctx = document.querySelector('canvas');
// 需要拍照时执行此代码,完成拍照
ctx.getContext('2d').drawImage($video, 0, 0);

function downLoad(url){
    const $a = document.createElement("a");
    $a.download = 'photo';
    $a.href = url;
    document.body.appendChild($a);
    $a.click();
    $a.remove();
}

// 调用 download 函数进行图片下载
downLoad(ctx.toDataURL("image/jpeg"));

drawImage 的第一个参数支持 HTMLVideoElement 类型,所以可以直接将 $video 作为第一个参数传入,这样就通过 canvas 获取到照片了

然后通过 a 标签的 download 将照片下载下来保存到本地

音视频录制

基本概念

ArrayBuffer 对象表示通用的、固定长度的二进制数据缓冲区,可以使用它存储图片、视频等内容,但ArrayBuffer 对象不能直接进行访问,ArrayBuffer 只是描述有这样一块空间可以用来存放二进制数据,但在计算机的内存中并没有真正地为其分配空间,只有当具体类型化后,它才真正地存在于内存中

let buffer = new ArrayBuffer(16); // 创建一个长度为 16 的 buffer
let view = new Uint32Array(buffer);

是Int32Array、Uint8Array、DataView等类型的总称,这些类型都是使用 ArrayBuffer 类实现的,因此才统称他们为 ArrayBufferView

(Binary Large Object)是 JavaScript 的大型二进制对象类型,WebRTC 最终就是使用它将录制好的音视频流保存成多媒体文件的,而它的底层是由上面所讲的 ArrayBuffer 对象的封装类实现的,即 Int8Array、Uint8Array 等类型

音频录制接口

const mediaRecorder = new MediaRecorder(stream[, options]);

stream参数是将要录制的流,它可以是来自于使用 navigator.mediaDevices.getUserMedia 创建的流或者来自于 audio,video 以及 canvas DOM 元素

MediaRecorder.ondataavailable事件可用于获取录制的媒体资源 (在事件的 data 属性中会提供一个可用的 Blob 对象)

录制的流程如下:

<video autoplay playsinline controls id="video-show"></video>
<video id="video-replay"></video>
<button id="record">开始录制</button>
<button id="stop">停止录制</button>
<button id="recplay">录制播放</button>
<button id="download">录制视频下载</button>
let buffer;
const $videoshow = document.getElementById('video-show');
const promise = navigator.mediaDevices.getUserMedia({
  video: true
}).then(
  stream => {
  console.log('stream', stream);
  window.stream = stream;
  $videoshow.srcObject = stream;
})

function startRecord(){     
  buffer = [];     
  // 设置录制下来的多媒体格式 
  const options = {
    mimeType: 'video/webm;codecs=vp8'
  }

  // 判断浏览器是否支持录制
  if(!MediaRecorder.isTypeSupported(options.mimeType)){
    console.error(`${options.mimeType} is not supported!`);
    return;
  }

  try{
    // 创建录制对象
    mediaRecorder = new MediaRecorder(window.stream, options);
    console.log('mediaRecorder', mediaRecorder);
  }catch(e){
    console.error('Failed to create MediaRecorder:', e);
    return;
  }

  // 当有音视频数据来了之后触发该事件
  mediaRecorder.ondataavailable = handleDataAvailable;
  // 开始录制
  mediaRecorder.start(2000); // 若设置了 timeslice 这个毫秒值,那么录制的数据会按照设定的值分割成一个个单独的区块
}

// 当该函数被触发后,将数据压入到 blob 中
function handleDataAvailable(e){
  console.log('e', e.data);
  if(e && e.data && e.data.size > 0){
    buffer.push(e.data);
  }
}

document.getElementById('record').onclick = () => {
  startRecord();
};

document.getElementById('stop').onclick = () => {
  mediaRecorder.stop();
  console.log("recorder stopped, data available");
};

// 回放录制文件
const $video = document.getElementById('video-replay');
document.getElementById('recplay').onclick = () => {
  const blob = new Blob(buffer, {type: 'video/webm'});
  $video.src = window.URL.createObjectURL(blob);
  $video.srcObject = null;
  $video.controls = true;
  $video.play();
};

// 下载录制文件
document.getElementById('download').onclick = () => {
  const blob = new Blob(buffer, {type: 'video/webm'});
  const url = window.URL.createObjectURL(blob);
  const a = document.createElement('a');

  a.href = url;
  a.style.display = 'none';
  a.download = 'video.webm';
  a.click();
}; 

创建连接

数据采集完成,接下来就要开始建立连接,然后进行数据通信了

要实现一套 1 对 1 的通话系统,通常我们的思路会是在每一端创建一个 socket,然后通过该 socket 与对端相连,当 socket 连接成功之后,就可以通过 socket 向对端发送数据或者接收对端的数据了,WebRTC 中提供了 RTCPeerConnection 类,其工作原理和 socket 基本一样,不过它的功能更强大,实现也更为复杂,下面就来讲讲 WebRTC 中的 RTCPeerConnection

RTCPeerConnection

在音视频通信中,每一方只需要有一个 RTCPeerConnection 对象,用它来接收或发送音视频数据,然而在真实的场景中,为了实现端与端之间的通话,还需要利用信令服务器交换一些信息,比如交换双方的 IP 和 port 地址,这样通信的双方才能彼此建立连接

WebRTC 规范对 WebRTC 要实现的功能、API 等相关信息做了大量的约束,比如规范中定义了如何采集音视频数据、如何录制以及如何传输等,甚至更细的,还定义了都有哪些 API,以及这些 API 的作用是什么,但这些约束只针对于客户端,并没有对服务端做任何限制,这就导致了我们在使用 WebRTC 的时候,必须自己去实现 信令 服务, 这里就不专门研究怎么实现信令服务器了,我们只来看看 RTCPeerConnection 是如何实现一对一通信的

RTCPeerConnection 如何工作呢?

1 . 获取本地音视频流

为连接的每个端创建一个 RTCPeerConnection 对象,并且给 RTCPeerConnection 对象添加一个本地流,该流是从 getUserMedia 获取的

// 调用 getUserMedia API 获取音视频流
navigator.mediaDevices.getUserMedia(mediaStreamConstraints).
  then(gotLocalMediaStream)

function gotLocalMediaStream(mediaStream) {
  window.stream = mediaStream;
}

// 创建 RTCPeerConnection 对象
let localPeerConnection = new RTCPeerConnection();

// 将音视频流添加到 RTCPeerConnection 对象中
localPeerConnection.addStream(stream);

2 . 交换媒体描述信息

获得音视频流后,就可以开始与对端进行媒体协商了(媒体协商就是看看你的设备都支持哪些编解码器,我的设备是否也支持?如果我的设备也支持,那么咱们双方就算协商成功了),这个过程需要通过信令服务器完成

现在假设 A 和 B 需要通讯

localPeerConnection.createOffer([options])
  .then((description) => {
        // 将 offer 保存到本地
      localPeerConnection.setLocalDescription(description)
        .then(() => {
          setLocalDescriptionSuccess(localPeerConnection);
        });
   })
// B 设置远程会话描述
remotePeerConnection.setRemoteDescription(description)
.then(() => {
  setRemoteDescriptionSuccess(remotePeerConnection);
});

remotePeerConnection.createAnswer()
.then((description)=> {
  // B 保存本地会话描述
  remotePeerConnection.setLocalDescription(description)
    .then(() => {
      setLocalDescriptionSuccess(remotePeerConnection);
    });
});
// A 保存 B 的 应答 answer 为远程会话描述
  localPeerConnection.setRemoteDescription(description)
    .then(() => {
      setRemoteDescriptionSuccess(localPeerConnection);
    });

至此就完成了媒体信息交换和协商

3 . 端与端建立连接

localPeerConnection.onicecandidate= function(event) {
  // 获取到触发 icecandidate 事件的 RTCPeerConnection 对象
  const peerConnection = event.target;
  // 获取到具体的 candidate
  const iceCandidate = event.candidate;
  // 将 candidate 包装成需要的格式,然后通过信令服务器发送给B

}
// 创建 RTCIceCandidate 对象 
const newIceCandidate = new RTCIceCandidate(iceCandidate);
remotePeerConnection.addIceCandidate(newIceCandidate);

这样就收集到了一个新的 Candidate,在真实的场景中,每当获得一个新的 Candidate 后,就会通过信令服务器交换给对端,对端再调用 RTCPeerConnection 对象的 addIceCandidate() 方法将收到的 Candidate 保存起来,然后按照 Candidate 的优先级进行连通性检测,如果 Candidate 连通性检测完成,那么端与端之间就建立了连接,这时媒体数据就可以通过这个连接进行传输了

音视频编解码

视频是连续的图像序列,由连续的帧构成,一帧即为一幅图像,由于人眼的视觉暂留效应,当帧序列以一定的速率播放时,我们看到的就是动作连续的视频,由于连续的帧之间相似性极高,为便于储存传输,我们需要对原始的视频进行编码压缩,以去除空间、时间维度的冗余

视频编解码是采用算法将视频数据的冗余信息去除,对图像进行压缩、存储及传输, 再将视频进行解码及格式转换, 追求在可用的计算资源内,尽可能高的视频重建质量和尽可能高的压缩比,以达到带宽和存储容量要求的视频处理技术

视频流传输中最为重要的编解码标准有H.26X系列(H.261、H.263、H.264),MPEG系列,Apple公司的 QuickTime 等

显示远端媒体流

通过 RTCPeerConnection 对象 A 与 B 双方建立连接后,本地的多媒体数据经过编码以后就可以被传送到远端了,远端收到了媒体数据解码后,怎么显示出来呢,下面以 video 为例,看看怎么让 RTCPeerConnection 获得的媒体数据与 video 标签结合起来

当远端有数据流到来的时候,浏览器会回调 onaddstream 函数,在回调函数中将得到的 stream 赋值给 video 标签的 srcObject 对象,这样 video 就与 RTCPeerConnection 进行了绑定,video 就能从 RTCPeerConnection 获取到视频数据,并最终将其显示出来了

localPeerConnection.onaddstream = function(event) {
  $remoteVideo.srcObject = event.stream;
}

结语

WebRTC 相关的东西非常非常多,这里只是很浅显地串讲了一下利用 WebRTC 实现实时通信的大体过程,如果感兴趣可以详细研究里面的细节

参考资料

[1]srcObject: https://developer.mozilla.org/zh-CN/docs/Web/API/HTMLMediaElement/srcObject#%E6%B5%8F%E8%A7%88%E5%99%A8%E5%85%BC%E5%AE%B9%E6%80%A7

[2]drawImage: https://developer.mozilla.org/zh-CN/docs/Web/API/CanvasRenderingContext2D/drawImage

[3]createOffer: https://developer.mozilla.org/zh-CN/docs/Web/API/RTCPeerConnection/createOffer

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8