通过抽象和组合,我们可以编写出更加简洁、易于理解和稳定的代码;类似于金字塔的建筑过程,我们总是可以在一层抽象之上再叠加一层,从而达到自己的目标。但是在日常的开发工作中,我们如何进行实践呢?本文将以笔者在Akka项目中的一段社区贡献作为引子分享笔者的一点心得。
通常,为了简化我们对数据流的处理,我们可能会使用 Java8 中首次引入的 Stream 、或者是 Kotlin、Scala 等编程语言中提供的更加丰富的集合库,亦或者使用反应式流的相关三方库来简化工作。虽然这些类库已经提供了丰富的操作符,但是我们依然会工作中遇到其对某些场景未提供合适操作符的情况。比如:
zipWithNext
、zipWithPrevious
、zipWithPreviousAndNext
,或者是 sliding
。bye
,则让用户断开连接,离开聊天室,那么这个时候我们可能会使用 takeWhile
。using
(资源安全)。foldResource
(资源安全)batch(3)
zipWithIndex
bufferUntil(predicate)
、bufferWhile(predicate)●
bufferUtilChanged
distinct
、distinctUntilChanged
limit(N)
、take(N)
, 或者按照条件 takeWhile
、takeUntil
假设我们需要跳过前N个元素,我们可能需要使用 skip(N)、drop(N)
, 或者按照条件 dropWhile、dropUntil
。
我们可以看到,上面这些操作符,每个都拥有具体的语义,虽然看起来只是一个简单的方法,但是如果需我们完全自主实现,定然也有不小的难度,比如 zipWithNext
、zipWithPrevious
、zipWithPreviousAndNext
在 Reactor-core 目前的发行版本中就没有直接提供,而和资源相关的, Reactor-core 中则只有一个 using
。
下面我们思考一下如何实现这些操作符吧~~
作为程序员,第一件事情,肯定就是 Ctrl + C
,第二件事就是 Ctrl + V
, 第三件事就是 Commit & Push
。然而,事情并没有这么简单。
难点有:
比如,以 zipWithIndex
举例,在 Reactor-core 中有 FluxIndexFuseable(370行代码)
和 FluxIndex (296行代码)
两个实现。而且清晰的处理了各种情况。而其他操作符也有类似:release 3.4.23
FluxBuffer
—— 575行代码FluxBufferPredicate
—— 464 行代码FluxDistinct
—— 609行代码FluxDistinctFuseable
—— 70行代码FluxDistinctUntilChanged
—— 337 行代码FluxUsing
—— 583 行代码如果要实现一个zipWithNext
自定义操作符 ,应该也有接近的工作量。这样的工作强度,个人认为无论是在代码审查还是后期的维护都是一个大问题。
为此,我认为需要一个新的抽象,来对上面的这些操作进行进一步的抽象。然后再这个之上,通过使用和组合其他的操作,从而更简单的实现自定义操作符;
所有上面的这些都可以抽象为:
经过分析,这里可以表达为 : 状态 + 输入 -(应用行为)-> 新的状态 + 输出
, 这样再加上 onCraete
、onComplete
生命周期函数,就可以完整表达。而提前结束等行为,则可以通过组合takeWhile
实现。我们将方法命名为:statefulMap
,声明如下:
public <S, In, Out> statefulMap(
java.util.function.Supplier<S> create,
java.util.function.BiFunction<S, In, Pair<S, Out>> f,
java.util.function.Function<S, Optional<Out>> onComplete){...}
让我们看一下如何通过这个方法来实现 zipWithIndex
吧:
Source.from(Arrays.asList("A", "B", "C", "D"))
.statefulMap(
() -> 0L,
(index, element) -> Pair.create(index + 1, Pair.create(element, index)),
indexOnComplete -> Optional.empty())
.runForeach(System.out::println, system);
// prints
// Pair(A,0)
// Pair(B,1)
// Pair(C,2)
// Pair(D,3)
也可以实现 zipWithNext
、zipWithPreviousAndNext
我们再看看如何实现较为复杂的 bufferUntilChanged
吧
Source.from(Arrays.asList("A", "B", "B", "C", "C", "C", "D"))
.statefulMap(
() -> (List<String>) new LinkedList<String>(),
(buffer, element) -> {
if (buffer.size() > 0 && (!buffer.get(0).equals(element))) {
return Pair.create(
new LinkedList<>(Collections.singletonList(element)),
Collections.unmodifiableList(buffer));
} else {
buffer.add(element);
return Pair.create(buffer, Collections.<String>emptyList());
}
},
Optional::ofNullable)
.filterNot(List::isEmpty)
.runForeach(System.out::println, system);
// prints
// [A]
// [B, B]
// [C, C, C]
// [D]
举一反三,如何实现 <span style="box-sizing: inherit;font-size: 15px;letter-spacing: 1px;">distinctUntilChanged
呢 ?
Source.from(Arrays.asList("A", "B", "B", "C", "C", "C", "D"))
.statefulMap(
Optional::<String>empty,
(lastElement, element) -> {
if (lastElement.isPresent() && lastElement.get().equals(element)) {
return Pair.create(lastElement, Optional.<String>empty());
} else {
return Pair.create(Optional.of(element), Optional.of(element));
}
},
listOnComplete -> Optional.empty())
.via(Flow.flattenOptional())
.runForeach(System.out::println, system);
// prints
// A
// B
// C
// D
如果要实现聚合buffer
呢?
Source.fromJavaStream(() -> IntStream.rangeClosed(1, 10))
.statefulMap(
() -> new ArrayList<Integer>(3),
(list, element) -> {
list.add(element);
if (list.size() == 3) {
return Pair.create(new ArrayList<Integer>(3), Collections.unmodifiableList(list));
} else {
return Pair.create(list, Collections.<Integer>emptyList());
}
},
listOnComplete -> Optional.ofNullable(listOnComplete))
.filterNot(List::isEmpty)
.runForeach(System.out::println, system);
// prints
List(1, 2, 3)
List(4, 5, 6)
List(7, 8, 9)
List(10)
在前面看了如何实现 zipWithIndex
、bufferUntilChanged
之后,让我们进一步看看如何优雅和安全地处理资源。在任何的编程语言和框架中,资源的处理都是非常基础但是又很棘手的事项。在 Java 7 中首次引入了 try-with-resources
语法,对资源处理进行了一定程度的简化,而在反应式流中,我们又应该如何的操作呢?这里我们可以分为两种情况:
因为资源通常开销较大且需要妥善管理,所以在开发过程中,我们更容易遇到的是 第2种情况,即资源的创建和销毁和流的生命周期进行了绑定。反应式流中的资源管理,还有更多的细节需要考虑:
综合上面的这些诉求,对应的代码就会变得很复杂,大家可以给自己一点时间思考一下:如果是自己独立实现类似的操作需要做出那些努力呢?而在现实的开发过程中,我们遇到的述求很多时候并非一起提出,而时随着迭代接踵而至,那么如果当初的代码编写的不是很易于扩展,拥有良好的测试,则可能按下葫芦浮起瓢。
比如在 reactor-core中就有如下的using
操作符:
public static <T, D> Mono<T> using(
Callable<? extends D> resourceSupplier,
Function<? super D, ? extends Mono<? extends T>> sourceSupplier,
Consumer<? super D> resourceCleanup) {...}
resourceSupplier
针对每个订阅者,创建一个资源
sourceSupplier
结合创建的资源,产生对应的元素
resourceCleanup
取消订阅或者流完成时,清理对应的资源
在 reactor-core 中,对应的底层实现为 MonoUsing
共 360 行代码,而要实现我们想要的逻辑,我们还需要和另一个流进行合并,即这里的 using
类似于 unfoldResource
。那么有没有可能使用更加简单的方案来进行实现呢?答案是肯定的,和前面的几个操作符一样,我们可以使用 statefulMap
来实现mapWithResource
,思维过程如下:
using
/ mapWithResource
的生命周期管理 和 statefulMap
的 create
和 onComplete
方法对应,针对资源,onComplete
方法可以被命名为更加贴切的 release
/ close
/ cleanUp
。create
方法中返回的 Resource
。Optional<Out>
来返回一个可选的值。CompletionStage<Out>
而非 Out
来实现,在 using
方法中,我们返回的是一个 Mono<T>
经过上面的思维过程,我们不难得出这个流上的方法的声明可以为:
public <R, In, Out> mapWithResource(
Supplier<? extends R> create,
BiFunction<? super R, ? super In, ? extends Out> function,
Function<? super R, ? extends Optional<? extends Out> close) {...}
resourceSupplier
针对每个订阅者/每次物化,创建一个资源
function
使用create
中创建的资源处理流中的每个元素
close
在流关闭的同时关闭资源,并再向下游提供一个可选的值
具体的的实现这里留空,感兴趣的小伙伴可以结合前面的例子进行实现。下面我们看一下如何使用这个 mapWithResource
方法,从而加深大家的理解。
mapWithResource
假设我们有一组 SQL 需要进行处理,我们需要从数据库中的多个表中查询对应的结果,并将最终结果进行合并和输出到控制台。在mapWithResource
的帮助下,我们可以极大的简化我们的代码:
Source.from(
Arrays.asList(
"SELECT * FROM shop ORDER BY article-0000 order by gmtModified desc limit 100;",
"SELECT * FROM shop ORDER BY article-0001 order by gmtModified desc limit 100;"))
.mapWithResource(
() -> dbDriver.create(url, userName, password),
(connection, query) -> db.doQuery(connection, query).toList(),
connection -> {
connection.close();
return Optional.empty();
})
.mapConcat(elems -> elems)
.runForeach(System.out::println, system);
在上面的例子中:我们有一组预先定义好的 SQL,分别从多个表中读取最新的 100 条数据,通过使用mapWithResource
,我们优雅地为每个流创建了 db 相关的连接,并进行对应的查询操作,并合并查询结果,在流处理完成后,关闭对应的资源。上面的代码通过复用我们前面编写的 mapWithResource
将复杂资源和生命周期管理进行了简化,作为对比,大家可以思考一下如果我们不使用已有抽象所需要付出的努力。
在上面的例子中,我们通过 statefulMap
以及和其他的操作符相互组合,实现了很多和状态、生命周期相关的操作符,而代码量则大大减少。基于一个经过考验的操作符来编写自定义操作符,也能进一步降低出错的概率,以及代码审查的难度。而相关的操作符都是通过一个底层的 statefulMap
来实现。映射到我们的工作中则是尽可能地抽象、提炼,对系统的核心模型、核心功能进行打磨,从而每个应用都有一个精巧的内核,并和其他的应用构成丰富的生态。而非上来就 复制、粘贴,重复造轮子;避免最终陷入复制、粘贴的泥潭中。虽然有时我们可能没有足够的时间来进一步抽象,而是业务先行。但是我依然建议,在后续的实践中,进行不断回顾和提炼,在保障系统稳定可靠、在有测试手段保障的情况下,进行逐步的重构,使得系统更加容易理解、维护和稳固。
笔者相信:磨刀不误砍柴工,在设计、方案review、测试和不断重构、精炼的过程中所花费的时间,一定会在将来多倍的回报。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8