从0到1,从理论到实践,全面讲解DDD,需要学习DDD的同学,欢迎来戳~~
学习DDD一个半月,最开始学习DDD的原因是因为我负责的业务线,涉及的系统非常多,想借鉴领域驱动设计的思想,看后续如何对系统进行重构。在没有学习DDD之前,感觉DDD可能属于那种“虚头巴脑”的东西,学完DDD之后,感觉。。。嗯。。。真香!
有了学习的动力,但是没有实际参与具体的项目,怎么办?那就去广泛涉猎相关的学习资料,刚好公司内部也进行DDD系列课程的培训,就赶紧报名,然后再通过网上的一些课程和博客资源,将DDD的基础知识系统化。
有了理论基础,没有实践,感觉还是很虚,套用马克思说过的一句话“实践是检验真理的唯一标准”,所以我想倒腾个DDD的Demo出来,刚好公司内部有DDD脚手架,更庆幸的是,我还找到一个应用到DDD的项目,再结合一个博主写的DDD Demo,就把这个Demo,结合实际的项目,通过DDD脚手架重构了一版,经过一个多星期的努力,我的DDD Demo就诞生了。经过这一番折腾,如果公司内部有项目需要按照DDD重构,我想我也可以!
为了证明该文章没有注水,下面列一下我的学习资料:
DDD Demo代码已经上传到GitHub中,大家可以自取:https://github.com/lml200701158/ddd-framework
git clone git@github.com:lml200701158/ddd-framework.git
说到DDD,绕不开MVC,在MVC三层架构中,我们进行功能开发的之前,拿到需求,解读需求。往往最先做的一步就是先设计表结构,在逐层设计上层dao,service,controller。对于产品或者用户的需求都做了一层自我理解的转化。
用户需求在被提出之后经过这么多层的转化后,特别是研发需求在数据库结构这一层转化后,将业务以主观臆断行为进行了转化。一旦业务边界划分模糊,考虑不全,大量的逻辑补充堆积到了代码层实现,变得越来越难维护。
举个栗子:
说到这里大家可能还是有点模糊DDD与常见的mvc架构的区别。这里以电商订单场景为例。假如我们现在要做一个电商订单下单的需求。涉及到用户选定商品,下订单,支付订单,对用户下单时的订单发货。
MVC架构里面,我们常见的做法是在分析好业务需求之后,就开始设计表结构了,订单表,支付表,商品表等等。然后编写业务逻辑。这是第一个版本的需求,功能迭代饿了,订单支付后我可以取消,下单的商品我们退换货,是不是又需要进行加表,紧跟着对于的实现逻辑也进行修改。功能不断迭代,代码就不断的层层往上叠。
DDD架构里面,我们先进行划分业务边界。这里面核心是订单。那么订单就是这个业务领域里面的聚合逻辑体现。支付,商品信息,地址等等都是围绕着订单实体。订单本身的属性决定之后,类似于地址只是一个属性的体现。当你将订单的领域模型构建好之后,后续的逻辑边界与仓储设计也就随之而来了。
学习DDD前,有很多基础概念需要掌握:领域、子域、核心域、通用域、支撑域、实体、值对象、聚合、聚合根、通用语言、限界上下文、事件风暴、领域事件、领域服务、应用服务、工厂、资源库。
这幅图总结的很全,他把DDD划分不同的层级,最里层是值、属性、唯一标识等,这个是最基本的数据单位,但不能直接使用。然后是实体,这个把基础的数据进行封装,可以直接使用,在代码中就是封装好的一个个实体对象。之后就是领域层,它按照业务划分为不同的领域,比如订单领域、商品领域、支付领域等。最后是应用服务,它对业务逻辑进行编排,也可以理解为业务层。
在研究和解决业务问题时,DDD 会按照一定的规则将业务领域进行细分,当领域细分到一定的程度后,DDD 会将问题范围限定在特定的边界内,在这个边界内建立领域模型,进而用代码实现该领域模型,解决相应的业务问题。简言之,DDD 的领域就是这个边界内要解决的业务问题域。
领域可以进一步划分为子领域。我们把划分出来的多个子领域称为子域,每个子域对应一个更小的问题域或更小的业务范围。
领域的核心思想就是将问题域逐级细分,来降低业务理解和系统实现的复杂度。通过领域细分,逐步缩小服务需要解决的问题域,构建合适的领域模型。
举个例子:
保险领域,我们可以把保险细分为承保、收付、再保以及理赔等子域,而承保子域还可以继续细分为投保、保全(寿险)、批改(财险)等子子域。
子域可以根据重要程度和功能属性划分为如下:
核心域、支撑域和通用域的主要目标是:通过领域划分,区分不同子域在公司内的不同功能属性和重要性,从而公司可对不同子域采取不同的资源投入和建设策略,其关注度也会不一样。
很多公司的业务,表面看上去相似,但商业模式和战略方向是存在很大差异的,因此公司的关注点会不一样,在划分核心域、通用域和支撑域时,其结果也会出现非常大的差异。
比如同样都是电商平台的淘宝、天猫、京东和苏宁易购,他们的商业模式是不同的。淘宝是 C2C 网站,个人卖家对个人买家,而天猫、京东和苏宁易购则是 B2C 网站,是公司卖家对个人买家。即便是苏宁易购与京东都是 B2C 的模式,苏宁易购是典型的传统线下卖场转型成为电商,京东则是直营加部分平台模式。因此,在公司建立领域模型时,我们就要结合公司战略重点和商业模式,重点关注核心域。
通用语言是团队统一的语言,不管你在团队中承担什么角色,在同一个领域的软件生命周期里都使用统一的语言进行交流。那么,通用语言的价值也就很明了,它可以解决交流障碍这个问题,使领域专家和开发人员能够协同合作,从而确保业务需求的正确表达。
这个通用语言到场景落地,大家可能还很模糊,其实就是把领域对象、属性、代码模型对象等,通过代码和文字建立映射关系,可以通过Excel记录这个关系,这样研发可以通过代码知道这个含义,产品或者业务方可以通过文字知道这个含义,沟通起来就不会有歧义,说的简单一点,其实就是统一产品和研发的话术。
直接看下面这幅图(来源于极客时间欧创新的DDD实战课):
通用语言也有它的上下文环境,为了避免同样的概念或语义在不同的上下文环境中产生歧义,DDD 在战略设计上提出了“限界上下文”这个概念,用来确定语义所在的领域边界。
限界上下文是一个显式的语义和语境上的边界,领域模型便存在于边界之内。边界内,通用语言中的所有术语和词组都有特定的含义。把限界上下文拆解开看,限界就是领域的边界,而上下文则是语义环境。通过领域的限界上下文,我们就可以在统一的领域边界内用统一的语言进行交流。
DDD中要求实体是唯一的且可持续变化的。意思是说在实体的生命周期内,无论其如何变化,其仍旧是同一个实体。唯一性由唯一的身份标识来决定的。可变性也正反映了实体本身的状态和行为。
实体以 DO(领域对象)的形式存在,每个实体对象都有唯一的 ID。我们可以对一个实体对象进行多次修改,修改后的数据和原来的数据可能会大不相同。但是,由于它们拥有相同的 ID,它们依然是同一个实体。比如商品是商品上下文的一个实体,通过唯一的商品 ID 来标识,不管这个商品的数据如何变化,商品的 ID 一直保持不变,它始终是同一个商品。
当你只关心某个对象的属性时,该对象便可作为一个值对象。我们需要将值对象看成不变对象,不要给它任何身份标识,还应该尽量避免像实体对象一样的复杂性。
还是举个订单的例子,订单是一个实体,里面包含地址,这个地址可以只通过属性嵌入的方式形成的订单实体对象,也可以将地址通过json序列化一个string类型的数据,存到DB的一个字段中,那么这个Json串就是一个值对象,是不是很好理解?下面给个简单的图(同样是源于极客时间欧创新的DDD实战课):
聚合:我们把一些关联性极强、生命周期一致的实体、值对象放到一个聚合里。聚合是领域对象的显式分组,旨在支持领域模型的行为和不变性,同时充当一致性和事务性边界。
聚合有一个聚合根和上下文边界,这个边界根据业务单一职责和高内聚原则,定义了聚合内部应该包含哪些实体和值对象,而聚合之间的边界是松耦合的。按照这种方式设计出来的服务很自然就是“高内聚、低耦合”的。
聚合在 DDD 分层架构里属于领域层,领域层包含了多个聚合,共同实现核心业务逻辑。跨多个实体的业务逻辑通过领域服务来实现,跨多个聚合的业务逻辑通过应用服务来实现。比如有的业务场景需要同一个聚合的 A 和 B 两个实体来共同完成,我们就可以将这段业务逻辑用领域服务来实现;而有的业务逻辑需要聚合 C 和聚合 D 中的两个服务共同完成,这时你就可以用应用服务来组合这两个服务。
如果把聚合比作组织,那聚合根就是这个组织的负责人。聚合根也称为根实体,它不仅是实体,还是聚合的管理者。
上面讲的还是有些抽象,下面看一个图就能很好理解(同样是源于极客时间欧创新的DDD实战课):
简单概括一下:
当一些逻辑不属于某个实体时,可以把这些逻辑单独拿出来放到领域服务中,理想的情况是没有领域服务,如果领域服务使用不恰当,慢慢又演化回了以前逻辑都在service层的局面。
可以使用领域服务的情况:
应用层作为展现层与领域层的桥梁,是用来表达用例和用户故事的主要手段。
应用层通过应用服务接口来暴露系统的全部功能。在应用服务的实现中,它负责编排和转发,它将要实现的功能委托给一个或多个领域对象来实现,它本身只负责处理业务用例的执行顺序以及结果的拼装。通过这样一种方式,它隐藏了领域层的复杂性及其内部实现机制。
应用层相对来说是较“薄”的一层,除了定义应用服务之外,在该层我们可以进行安全认证,权限校验,持久化事务控制,或者向其他系统发生基于事件的消息通知,另外还可以用于创建邮件以发送给客户等。
领域事件 = 事件发布 + 事件存储 + 事件分发 + 事件处理。
领域事件是一个领域模型中极其重要的部分,用来表示领域中发生的事件。忽略不相关的领域活动,同时明确领域专家要跟踪或希望被通知的事情,或与其他模型对象中的状态更改相关联,下面简单说明领域事件:
比如下订单后,给用户增长积分与赠送优惠券的需求。如果使用瀑布流的方式写代码。一个个逻辑调用,那么不同用户,赠送的东西不同,逻辑就会变得又臭又长。这里的比较好的方式是,用户下订单成功后,发布领域事件,积分聚合与优惠券聚合监听订单发布的领域事件进行处理。
仓储介于领域模型和数据模型之间,主要用于聚合的持久化和检索。它隔离了领域模型和数据模型,以便我们关注于领域模型而不需要考虑如何进行持久化。
我们将暂时不使用的领域对象从内存中持久化存储到磁盘中。当日后需要再次使用这个领域对象时,根据 key 值到数据库查找到这条记录,然后将其恢复成领域对象,应用程序就可以继续使用它了,这就是领域对象持久化存储的设计思想。
严格分层架构:某层只能与直接位于的下层发生耦合。
松散分层架构:允许上层与任意下层发生耦合。
在领域驱动设计(DDD)中采用的是松散分层架构,层间关系不那么严格。每层都可能使用它下面所有层的服务,而不仅仅是下一层的服务。每层都可能是半透明的,这意味着有些服务只对上一层可见,而有些服务对上面的所有层都可见。
分层的作用,从上往下:
应用服务层直接调用基础设施层的一条线,这条线是什么意思呢?领域模型的建立是为了控制对于数据的增删改的业务边界,至于数据查询,不同的报表,不同的页面需要展示的数据聚合不具备强业务领域,因此常见的会使用CQRS方式进行查询逻辑的处理。其它的直接调用,原理类同。
每一层都有自己特定的数据,可以做如下区分:
各个O的区别和具体使用场景,有些O是否一定需要,可以参考文章《【领域驱动系列2】浅析VO、DTO、DO、PO》
这篇文章有2个重要的概念一直没有提,分别为“战略设计”和“战术设计”。
战略设计从业务视角出发,建立业务领域模型,划分领域边界,建立通用语言的限界上下文,限界上下文可以作为微服务设计的参考边界。
因为我给的Demo非常简单,所以就直接跳过了战略设计这个流程,但是实际的项目中,“战略设计”需要比较资深的工程师去掌控。
战略设计主要流程包括:建立统一语言、领域分解、领域建模
战略设计的工具包括:事件风暴、用例分析、四色建模、领域故事讲述,其中“事件风暴”是我们最常用的战略设计工具。
战术设计从技术视角出发,侧重于领域模型的技术实现,完成软件开发和落地,包括:聚合根、实体、值对象、领域服务、应用服务和资源库等代码逻辑的设计和实现。在我们的Demo中,就可以看到很多“战术设计”的影子。
因为文章篇幅原因,战略设计和战术设计就不继续展开,需要学习这块内容的同学,网上资料和相关书籍也很多,当然也可以私我哈。
是不是感觉这块内容比较抽象?直接对着Demo学习吧,很多东西你就会豁然开朗。
项目划分为用户接口层、应用层、领域层和基础服务层,每一层的代码结构都非常清晰,包括每一层VO、DTO、DO、PO的数据定义。对于每一层的公共代码,比如常量、接口等,都抽离到ddd-common中。
./ddd-application // 应用层
├── pom.xml
└── src
└── main
└── java
└── com
└── ddd
└── applicaiton
├── converter
│ └── UserApplicationConverter.java // 类型转换器
└── impl
└── AuthrizeApplicationServiceImpl.java // 业务逻辑
./ddd-common
├── ddd-common // 通用类库
│ ├── pom.xml
│ └── src
│ └── main
│ └── java
│ └── com
│ └── ddd
│ └── common
│ ├── exception // 异常
│ │ ├── ServiceException.java
│ │ └── ValidationException.java
│ ├── result // 返回结果集
│ │ ├── BaseResult.javar
│ │ ├── Page.java
│ │ ├── PageResult.java
│ │ └── Result.java
│ └── util // 通用工具
│ ├── GsonUtil.java
│ └── ValidationUtil.java
├── ddd-common-application // 业务层通用模块
│ ├── pom.xml
│ └── src
│ └── main
│ └── java
│ └── com
│ └── ddd
│ └── applicaiton
│ ├── dto // DTO
│ │ ├── RoleInfoDTO.java
│ │ └── UserRoleDTO.java
│ └── servic // 业务接口
│ └── AuthrizeApplicationService.java
├── ddd-common-domain
│ ├── pom.xml
│ └── src
│ └── main
│ └── java
│ └── com
│ └── ddd
│ └── domain
│ ├── event // 领域事件
│ │ ├── BaseDomainEvent.java
│ │ └── DomainEventPublisher.java
│ └── service // 领域接口
│ └── AuthorizeDomainService.java
└── ddd-common-infra
├── pom.xml
└── src
└── main
└── java
└── com
└── ddd
└── infra
├── domain // DO
│ └── AuthorizeDO.java
├── dto
│ ├── AddressDTO.java
│ ├── RoleDTO.java
│ ├── UnitDTO.java
│ └── UserRoleDTO.java
└── repository
├── UserRepository.java // 领域仓库
└── mybatis
└── entity // PO
├── BaseUuidEntity.java
├── RolePO.java
├── UserPO.java
└── UserRolePO.java
./ddd-domian // 领域层
├── pom.xml
└── src
└── main
└── java
└── com
└── ddd
└── domain
├── event // 领域事件
│ ├── DomainEventPublisherImpl.java
│ ├── UserCreateEvent.java
│ ├── UserDeleteEvent.java
│ └── UserUpdateEvent.java
└── impl // 领域逻辑
└── AuthorizeDomainServiceImpl.java
./ddd-infra // 基础服务层
├── pom.xml
└── src
└── main
└── java
└── com
└── ddd
└── infra
├── config
│ └── InfraCoreConfig.java // 扫描Mapper文件
└── repository
├── converter
│ └── UserConverter.java // 类型转换器
├── impl
│ └── UserRepositoryImpl.java
└── mapper
├── RoleMapper.java
├── UserMapper.java
└── UserRoleMapper.java
./ddd-interface
├── ddd-api // 用户接口层
│ ├── pom.xml
│ └── src
│ └── main
│ ├── java
│ │ └── com
│ │ └── ddd
│ │ └── api
│ │ ├── DDDFrameworkApiApplication.java // 启动入口
│ │ ├── converter
│ │ │ └── AuthorizeConverter.java // 类型转换器
│ │ ├── model
│ │ │ ├── req // 入参 req
│ │ │ │ ├── AuthorizeCreateReq.java
│ │ │ │ └── AuthorizeUpdateReq.java
│ │ │ └── vo // 输出 VO
│ │ │ └── UserAuthorizeVO.java
│ │ └── web // API
│ │ └── AuthorizeController.java
│ └── resources // 系统配置
│ ├── application.yml
│ └── resources // Sql文件
│ └── init.sql
└── ddd-task
└── pom.xml
./pom.xml
包括3张表,分别为用户、角色和用户角色表,一个用户可以拥有多个角色,一个角色可以分配给多个用户。
create table t_user
(
id bigint auto_increment comment '主键' primary key,
user_name varchar(64) null comment '用户名',
password varchar(255) null comment '密码',
real_name varchar(64) null comment '真实姓名',
phone bigint null comment '手机号',
province varchar(64) null comment '用户名',
city varchar(64) null comment '用户名',
county varchar(64) null comment '用户名',
unit_id bigint null comment '单位id',
unit_name varchar(64) null comment '单位名称',
gmt_create datetime default CURRENT_TIMESTAMP not null comment '创建时间',
gmt_modified datetime default CURRENT_TIMESTAMP not null on update CURRENT_TIMESTAMP comment '修改时间',
deleted bigint default 0 not null comment '是否删除,非0为已删除'
)comment '用户表' collate = utf8_bin;
create table t_role
(
id bigint auto_increment comment '主键' primary key,
name varchar(256) not null comment '名称',
code varchar(64) null comment '角色code',
gmt_create datetime default CURRENT_TIMESTAMP not null comment '创建时间',
gmt_modified datetime default CURRENT_TIMESTAMP not null on update CURRENT_TIMESTAMP comment '修改时间',
deleted bigint default 0 not null comment '是否已删除'
)comment '角色表' charset = utf8;
create table t_user_role (
id bigint auto_increment comment '主键id' primary key,
user_id bigint not null comment '用户id',
role_id bigint not null comment '角色id',
gmt_create datetime default CURRENT_TIMESTAMP not null comment '创建时间',
gmt_modified datetime default CURRENT_TIMESTAMP not null comment '修改时间',
deleted bigint default 0 not null comment '是否已删除'
)comment '用户角色关联表' charset = utf8;
仓储(资源库)介于领域模型和数据模型之间,主要用于聚合的持久化和检索。它隔离了领域模型和数据模型,以便我们关注于领域模型而不需要考虑如何进行持久化。
比如保存用户,需要将用户和角色一起保存,也就是创建用户的同时,需要新建用户的角色权限,这个可以直接全部放到仓储中:
public AuthorizeDO save(AuthorizeDO user) {
UserPO userPo = userConverter.toUserPo(user);
if(Objects.isNull(user.getUserId())){
userMapper.insert(userPo);
user.setUserId(userPo.getId());
} else {
userMapper.updateById(userPo);
userRoleMapper.delete(Wrappers.<UserRolePO>lambdaQuery()
.eq(UserRolePO::getUserId, user.getUserId()));
}
List<UserRolePO> userRolePos = userConverter.toUserRolePo(user);
userRolePos.forEach(userRoleMapper::insert);
return this.query(user.getUserId());
}
仓储对外暴露的接口如下:
// 用户领域仓储
public interface UserRepository {
// 删除
void delete(Long userId);
// 查询
AuthorizeDO query(Long userId);
// 保存
AuthorizeDO save(AuthorizeDO user);
}
基础服务层不仅仅包括资源库,与第三方的调用,都需要放到该层,Demo中没有该示例,我们可以看一个小米内部具体的实际项目,他把第三方的调用放到了remote目录中:
我们有用户和角色两个实体,可以将用户、角色和两者关系进行聚合,然后用户就是聚合根,聚合之后的属性,我们称之为“权限”。
对于地址Address,目前是作为字段属性存储到DB中,如果对地址无需进行检索,可以把地址作为“值对象”进行存储,即把地址序列化为Json存,存储到DB的一个字段中。
public class AuthorizeDO {
// 用户ID
private Long userId;
// 用户名
private String userName;
// 真实姓名
private String realName;
// 手机号
private String phone;
// 密码
private String password;
// 用户单位
private UnitDTO unit;
// 用户地址
private AddressDTO address;
// 用户角色
private List<RoleDTO> roles;
}
Demo中的领域服务比较薄,通过单位ID后去获取单位名称,构建单位信息:
@Service
public class AuthorizeDomainServiceImpl implements AuthorizeDomainService {
@Override
// 设置单位信息
public void associatedUnit(AuthorizeDO authorizeDO) {
String unitName = "武汉小米";// TODO: 通过第三方获取
authorizeDO.getUnit().setUnitName(unitName);
}
}
我们其实可以把领域服务再进一步抽象,可以抽象出领域能力,通过这些领域能力去构建应用层逻辑,比如账号相关的领域能力可以包括授权领域能力、身份认证领域能力等,这样每个领域能力相对独立,就不会全部揉到一个文件中,下面是实际项目的领域层截图:
领域事件 = 事件发布 + 事件存储 + 事件分发 + 事件处理。
这个Demo中,对领域事件的处理非常简单,还是一个应用内部的领域事件,就是每次执行一次具体的操作时,把行为记录下来。Demo中没有记录事件的库表,事件的分发还是同步的方式,所以Demo中的领域事件还不完善,后面我会再继续完善Demo中的领域事件,通过Java消息机制实现解耦,甚至可以借助消息队列,实现异步。
/**
* 领域事件基类
*
* @author louzai
* @since 2021/11/22
*/
@Getter
@Setter
@NoArgsConstructor
public abstract class BaseDomainEvent<T> implements Serializable {
private static final long serialVersionUID = 1465328245048581896L;
/**
* 发生时间
*/
private LocalDateTime occurredOn;
/**
* 领域事件数据
*/
private T data;
public BaseDomainEvent(T data) {
this.data = data;
this.occurredOn = LocalDateTime.now();
}
}
/**
* 用户新增领域事件
*
* @author louzai
* @since 2021/11/20
*/
public class UserCreateEvent extends BaseDomainEvent<AuthorizeDO> {
public UserCreateEvent(AuthorizeDO user) {
super(user);
}
}
/**
* 领域事件发布实现类
*
* @author louzai
* @since 2021/11/20
*/
@Component
@Slf4j
public class DomainEventPublisherImpl implements DomainEventPublisher {
@Autowired
private ApplicationEventPublisher applicationEventPublisher;
@Override
public void publishEvent(BaseDomainEvent event) {
log.debug("发布事件,event:{}", GsonUtil.gsonToString(event));
applicationEventPublisher.publishEvent(event);
}
}
应用层就非常好理解了,只负责简单的逻辑编排,比如创建用户授权:
@Transactional(rollbackFor = Exception.class)
public void createUserAuthorize(UserRoleDTO userRoleDTO){
// DTO转为DO
AuthorizeDO authorizeDO = userApplicationConverter.toAuthorizeDo(userRoleDTO);
// 关联单位单位信息
authorizeDomainService.associatedUnit(authorizeDO);
// 存储用户
AuthorizeDO saveAuthorizeDO = userRepository.save(authorizeDO);
// 发布用户新建的领域事件
domainEventPublisher.publishEvent(new UserCreateEvent(saveAuthorizeDO));
}
查询用户授权信息:
@Override
public UserRoleDTO queryUserAuthorize(Long userId) {
// 查询用户授权领域数据
AuthorizeDO authorizeDO = userRepository.query(userId);
if (Objects.isNull(authorizeDO)) {
throw ValidationException.of("UserId is not exist.", null);
}
// DO转DTO
return userApplicationConverter.toAuthorizeDTO(authorizeDO);
}
细心的同学可以发现,我们应用层和领域层,通过DTO和DO进行数据转换。
最后就是提供API接口:
@GetMapping("/query")
public Result<UserAuthorizeVO> query(@RequestParam("userId") Long userId){
UserRoleDTO userRoleDTO = authrizeApplicationService.queryUserAuthorize(userId);
Result<UserAuthorizeVO> result = new Result<>();
result.setData(authorizeConverter.toVO(userRoleDTO));
result.setCode(BaseResult.CODE_SUCCESS);
return result;
}
@PostMapping("/save")
public Result<Object> create(@RequestBody AuthorizeCreateReq authorizeCreateReq){
authrizeApplicationService.createUserAuthorize(authorizeConverter.toDTO(authorizeCreateReq));
return Result.ok(BaseResult.INSERT_SUCCESS);
}
数据的交互,包括入参、DTO和VO,都需要对数据进行转换。
谈谈我对DDD的理解,我觉得DDD不像一门技术,我理解的技术比如高并发、缓存、消息队列等,DDD更像是一项软技能,一种方法论,包含了很多设计理念。
因为文章篇幅原因,不可能涵盖DDD所有的内容,特别是“战略设计”的部分,基本是一笔带过,因为方法论基本都差不多,具体实操需要经验的积累,但是对于想入门DDD的同学,我觉得这篇文章还在值得大家去学习的。
毕竟接触DDD的时间还不长,所以有些知识点理解的不够深刻,或者有些偏颇,欢迎大家批评指正!
参考文章:
- 极客时间:https://time.geekbang.org/column/intro/100037301?tab=catalog
- 一文带你落地DDD:https://juejin.cn/post/7004002483601145863 领域驱动设计在互联网业务开发中的实践:https://tech.meituan.com/2017/12/22/ddd-in-practice.html
- 浅析VO、DTO、DO、PO:https://developer.aliyun.com/article/26967
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8