让 Netty “榨干”你的CPU

353次阅读  |  发布于2年以前

大家好, Netty 技术作为卷王必争之地,竞争激烈。这次悟空来助攻一波,送 5 本 Netty 的书~ 活动规则可以拉到文末~

在开始了解Netty是什么之前,我们先来回顾一下,如果需要实现一个客户端与服务端通信的程序,使用传统的IO编程,应该如何来实现?

IO编程

我们简化一下场景:客户端每隔两秒发送一个带有时间戳的“hello world”给服务端,服务端收到之后打印它。

在传统的IO模型中,每个连接创建成功之后都需要由一个线程来维护,每个线程都包含一个while死循环,那么1万个连接对应1万个线程,继而有1万个while死循环,这就带来如下几个问题。

为了解决这3个问题,JDK在1.4版本之后提出了NIO。

NIO编程

在NIO编程模型中,新来一个连接不再创建一个新线程,而是可以把这个连接直接绑定到某个固定的线程,然后这个连接所有的读写都由这个线程来负责,那么它是怎么做到的?我们用下图来对比一下IO与NIO。

如上图所示,在IO模型中,一个连接来了,会创建一个线程,对应一个while死循环,死循环的目的就是不断监测这个连接上是否有数据可以读。在大多数情况下,1万个连接里面同一时刻只有少量的连接有数据可读,因此,很多while死循环都白白浪费掉了,因为读不出数据。

而在NIO模型中,这么多while死循环转换为一个死循环,这个死循环由一个线程控制,那么NIO又是如何做到一个线程一个while死循环就能监测1万个连接是否有数据可读的呢?

这就是NIO模型中Selector的作用,一个连接来了之后,不会创建一个while死循环去监听是否有数据可读,而是直接把这条连接注册到Selector上。然后,通过检查这个Selector,就可以批量监测出有数据可读的连接,进而读取数据。下面我们举一个生活中非常简单的例子来说明IO与NIO的区别。

在一家幼儿园里,小朋友有上厕所的需求,小朋友都太小以至于你要问他要不要上厕所,他才会告诉你。幼儿园一共有100个小朋友,有两种方案可以解决小朋友上厕所的问题。

1.每个小朋友都配一个老师。每个老师都隔段时间询问小朋友是否要上厕所。如果要上,就领他去厕所,100个小朋友就需要100个老师来询问,并且每个小朋友上厕所的时候都需要一个老师领着他去,这就是IO模型,一个连接对应一个线程。

2.所有的小朋友都配同一个老师。这个老师隔段时间询问所有的小朋友是否有人要上厕所,然后每一时刻把所有要上厕所的小朋友批量领到厕所,这就是NIO模型。所有小朋友都注册到同一个老师,对应的就是所有的连接都注册到同一个线程,然后批量轮询。

这就是NIO模型解决线程资源受限问题的方案。在实际开发过程中,我们会开多个线程,每个线程都管理着一批连接,相对于IO模型中一个线程管理一个连接,消耗的线程资源大幅减少。

由于NIO模型中线程数量大大降低,因此线程切换效率也大幅度提高。

IO读写是面向流的,一次性只能从流中读取一字节或者多字节,并且读完之后流无法再读取,需要自己缓存数据。而NIO的读写是面向Buffer的,可以随意读取里面任何字节数据,不需要自己缓存数据,只需要移动读写指针即可。

简单讲完了JDK NIO的解决方案之后,接下来我们使用NIO方案替换掉IO方案。先来看看,如果用JDK原生的NIO来实现服务端,该怎么做。

前方高能预警:以下代码可能会让你感觉极度不适,如有不适,请跳过。

NIOServer.java

/**
 * @author 闪电侠
 */
public class NIOServer {
    public static void main(String[] args) throws IOException {
        Selector serverSelector = Selector.open();
        Selector clientSelector = Selector.open();

        new Thread(() -> {
            try {
                // 对应IO编程中的服务端启动
                ServerSocketChannel listenerChannel = ServerSocketChannel.open();
                listenerChannel.socket().bind(new InetSocketAddress(8000));
                listenerChannel.configureBlocking(false);
                listenerChannel.register(serverSelector, SelectionKey.OP_ACCEPT);

                while (true) {
                    // 监测是否有新连接,这里的1指阻塞的时间为 1ms
                    if (serverSelector.select(1) > 0) {
                        Set<SelectionKey> set = serverSelector.selectedKeys();
                        Iterator<SelectionKey> keyIterator = set.iterator();

                        while (keyIterator.hasNext()) {
                            SelectionKey key = keyIterator.next();

                            if (key.isAcceptable()) {
                                try {
                                    // (1)每来一个新连接,不需要创建一个线程,而是直接注册到clientSelector
                                    SocketChannel clientChannel = ((ServerSocketChannel) key.channel()).accept();
                                    clientChannel.configureBlocking(false);
                                    clientChannel.register(clientSelector, SelectionKey.OP_READ);
                                } finally {
                                    keyIterator.remove();
                                }
                            }

                        }
                    }
                }
            } catch (IOException ignored) {
            }

        }).start();


        new Thread(() -> {
            try {
                while (true) {
                    // (2)批量轮询哪些连接有数据可读,这里的1指阻塞的时间为 1ms
                    if (clientSelector.select(1) > 0) {
                        Set<SelectionKey> set = clientSelector.selectedKeys();
                        Iterator<SelectionKey> keyIterator = set.iterator();

                        while (keyIterator.hasNext()) {
                            SelectionKey key = keyIterator.next();

                            if (key.isReadable()) {
                                try {
                                    SocketChannel clientChannel = (SocketChannel) key.channel();
                                    ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
                                    // (3)面向Buffer
                                    clientChannel.read(byteBuffer);
                                    byteBuffer.flip();
                                    System.out.println(Charset.defaultCharset().newDecoder(). decode(byteBuffer)
                                            .toString());
                                } finally {
                                    keyIterator.remove();
                                    key.interestOps(SelectionKey.OP_READ);
                                }
                            }

                        }
                    }
                }
            } catch (IOException ignored) {
            }
        }).start();


    }
}

相信大部分没有接触过NIO的读者应该会直接跳过代码来到这一行:原来使用JDK原生NIO的API实现一个简单的服务端通信程序如此复杂!

我们还是先对照NIO来解释一下核心思路。

其他细节部分,因为实在是太复杂,所以笔者不再多讲,读者也不用对代码的细节深究到底。总之,强烈不建议直接基于JDK原生NIO来进行网络开发,下面是笔者总结的原因。

正因为如此,客户端代码这里就省略了,读者可以直接使用IOClient.java与NIOServer.java通信。

JDK的NIO犹如带刺的玫瑰,虽然美好,让人向往,但是使用不当会让你抓耳挠腮,痛不欲生,正因为如此,Netty横空出世!

Netty编程

Netty到底是何方神圣?

用一句简单的话来说就是:Netty封装了JDK的NIO,让你用得更方便,不用再写一大堆复杂的代码了。

用官方正式的话来说就是:Netty是一个异步事件驱动的网络应用框架,用于快速开发可维护的高性能服务端和客户端。

下面是笔者总结的使用Netty而不使用JDK原生NIO的原因。

这些原因看不懂没有关系,在后续的章节中我们都可以学到。接下来我们用Netty来重新实现一下本章开篇的功能吧!

首先引入Maven依赖,案例后续Netty都基于4.1.6.Final版本。

 <dependency>
        <groupId>io.netty</groupId>
        <artifactId>netty-all</artifactId>
        <version>4.1.6.Final</version>
    </dependency>

然后是服务端实现部分。

NettyServer.java

/**
 * @author 闪电侠
 */
public class NettyServer {
    public static void main(String[] args) {
        ServerBootstrap serverBootstrap = new ServerBootstrap();

        NioEventLoopGroup boss = new NioEventLoopGroup();
        NioEventLoopGroup worker = new NioEventLoopGroup();
        serverBootstrap
                .group(boss, worker)
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    protected void initChannel(NioSocketChannel ch) {
                        ch.pipeline().addLast(new StringDecoder());
                        ch.pipeline().addLast(new SimpleChannelInboundHandler<String>() {
                            @Override
                            protected void channelRead0(ChannelHandlerContext ctx, String msg) {
                                System.out.println(msg);
                            }
                        });
                    }
                })
                .bind(8000);
    }
}

这么一小段代码就实现了我们前面NIO编程中的所有功能,包括服务端启动、接收新连接、打印客户端传来的数据,怎么样?是不是比JDK原生NIO编程简洁许多?

初学Netty的时候,由于大部分人对NIO编程缺乏经验,因此,将Netty里的概念与IO模型结合起来可能更好理解。

剩下的逻辑笔者在后面的内容中会详细分析,读者可以先把这段代码复制到自己的IDE里,然后运行main函数。

下面是客户端NIO的实现部分。

NettyClient.java

/**
 * @author 闪电侠
 */
public class NettyClient {
    public static void main(String[] args) throws InterruptedException {
        Bootstrap bootstrap = new Bootstrap();
        NioEventLoopGroup group = new NioEventLoopGroup();

        bootstrap.group(group)
                .channel(NioSocketChannel.class)
                .handler(new ChannelInitializer<Channel>() {
                    @Override
                    protected void initChannel(Channel ch) {
                        ch.pipeline().addLast(new StringEncoder());
                    }
                });

        Channel channel = bootstrap.connect("127.0.0.1", 8000).channel();

        while (true) {
            channel.writeAndFlush(new Date() + ": hello world!");
            Thread.sleep(2000);
        }
    }
}

在客户端程序中,group对应了IOClient.java中main函数起的线程,剩下的逻辑在后面的内容中会详细分析,现在你要做的事情就是把这段代码复制到你的IDE里,然后运行main函数,最后回到NettyServer.java的控制台,你会看到效果。

使用Netty之后是不是觉得整个世界都变美好了?一方面,Netty对NIO封装得如此完美,写出来的代码非常优雅;另一方面,使用Netty之后,网络通信的性能问题几乎不用操心,尽情地让Netty“榨干”你的CPU吧。

以上内容节选自《跟闪电侠学 Netty:Netty 即时聊天实战与底层原理》一书!

目前市面上对初学者友好的Netty资料较少,网络上大多数技术博客都是一堆零散的知识点集合,无法串成一条线形成一个体系。

本书作者俞超老师(闪电侠)在多年的Netty实战、调优、“踩坑”过程中积累了丰富的经验,持续在网络上分享的相关博客、视频等有百万+阅读量,并得到网友一致好评!

为了将这部分经验系统地分享给大家,帮助大家提升核心竞争力,俞超老师特地将Netty底层原理相关知识进行系统梳理,写作了此书。

本书上篇通过一个即时聊天的例子,让读者能够系统地使用一遍Netty,全面掌握Netty的知识点;下篇通过对源码的层层剖析,让读者能够掌握Netty底层原理,知其然并知其所以然,从而编写出高性能网络应用程序。

上篇 入门实战

在入门实战篇中,读者跟随笔者实践完这个即时聊天系统后,能够学会如何使用Netty完成最基本的网络通信程序,可以掌握以下知识点:

1. 如何启动服务端?

2. 如何启动客户端?

3. 如何设计长连自定义协议?

4. 拆包/粘包原理与实践。

5. 如何实现自定义编解码。

6. 如何使用Pipeline与ChannelHandler?

7. 心跳与空闲检测的方法。

8. 如何性能调优?

本篇通俗易懂,可一口气读完,让你一周内进入实战

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8