生产故障|Kafka消息发送延迟达到几十秒的罪魁祸首竟然是...

367次阅读  |  发布于2年以前

以前我在[知其然而知其所以然,为什么Kafka在2.8版本中会“抛弃”Zookeeper] 一文中阐述了为什么官方要废弃Zookeeper,当时我记得有读者反驳说zookeeper非常稳定,基本不会出现什么问题,笔者在双十一期间遇到的问题,就证明了Zookeeper的“脆弱性”,而zookeeper的脆弱性将对Kafka集群造成严重的影响。

1、故障现象

笔者在双十一期间负责的kafka集群的响应时间飙升到了10~30s,严重影响消息的写入。

通过对日志分析发现存在大面积分区Leader选举,__consumer_offsets主题的分区也大量进行分区Leader选举,从而导致消息发送几乎停止,大量消费组触发重平衡,整个集群接近瘫痪,最终确定了根因:Broker节点与Zookeeper会话超时,触发大量分区重新选举。

本文借此故障,与大家一起剖析一下Zookeeper在Kafka中起了哪些作用,以及确定“罪魁祸首”的过程,希望给大家排查问题能带来一定的启发。

2、Zookeeper在Kafka中具有举足轻重的作用

在正式进入故障分析之前,我们首先介绍一下Zookeeper在kafka架构设计中所起的角色。

核心理念:kafka的设计者对待Zookeeper的使用是非常谨慎的,即需要依靠Zookeeper进行控制器选举,Broker节点故障实时发现,但又尽量降低对Zookeeper的依赖

基于Zookeeper进行的程序开发,我们一般可以通过查看zookeeper中的目录布局,可以窥探出哪些功能是依靠Zookeeper完成,Kafka在Zookeeper中的存储目录结构如下图所示:

上述各个节点,其背后都关联着Kafka一个核心工作机制,大家可以顺藤摸瓜进行探究,本文需要重点介绍/brokers这个目录的布局与作用,目录详情如下:

在Zookeeper中有一种同样的“设计模式”,就是可以通过在zookeeper中创建临时节点+事件监听机制,从而实现数据的实时动态感知,以/brokers/ids为例进行阐述:

经过上面的初步介绍,Kafka对zookeeper的依赖还是非常大的,特别是Kafka控制器的选举、broker节点的存活状态等都依赖zookeeper。

Kafka 控制器可以看出是整个kafka集群的“大脑”,如果它出现异动,其影响范围之广,影响程度之大可想而知,接下来的故障分析会给出更直观的展现。

温馨提示:本文主要是一个故障分析过程,后续关于kafka控制器如何选举、leader_epoch副本同步机制等会在《Kafka原理与实战》专栏中一一介绍,敬请关注。

3、问题分析

一看到消息发送响应时间长,我的第一反应是查看线程栈,是不是有锁阻塞,但查看线程堆栈发现Kafka用于处理请求的线程池大部分都阻塞在获取任务处,表明“无活可干”状态:

说明客户端端消息发送请求都没有到达Kafka的排队队列,并且专门用于处理网络读写的线程池也很空闲,那又是为什么呢?

消息发送端延迟超级高,但服务端线程又极度空闲,有点诡异?

继续查看服务端日志,发现了大量主题(甚至连系统主题__consumer_offsets主题也发生了Leader选举),日志如下:

核心日志:start at Leader Epoch 大量分区在进行Leader选举。

Kafka中中只有Leader分区能处理读、写请求,follower分区只是从leader分区复制数据,在Leader节点宕机后参与leader选举,故分区在进行Leader选举时无法处理客户端的写入请求,而发送端又有重试机制,故消息发送延迟很大。

那到底在什么情况下会触发大量主题进行重新选举呢?

我们找到当前集群的Controler节点,查看state-change.log中,发现如下日志:

出现了大量分区的状态从OnlinePartition变更为OfflinePartition。

温馨提示:根据日志我们可以去查看源码,找到输出这些方法的调用链,就可以顺藤摸瓜去找针对性的日志。

继续查看Controler节点下的controller.log中发现关键日志:

核心日志解读:

接下来顺藤摸瓜,去看一下节点8上的日志如下图所示:

核心日志解读:原来broker与zookeeper的会话超时,导致临时节点被移除。

先不探究会话为什么会超时,我们先来看一下会话超时,会给Kafka集群带来什么严重影响。

/brokers/ids下任意一个节点被删除,Kafka控制器都能及时得到,并执行对应的处理。

这里需要分两种情况考虑。

3.1 普通Broker节点被移除

处理入口为:KafkaController的onBrokerFailure方法,代码详情如下图所示:

一个普通的broker在zk中被移除,Kafka控制器会将该节点上分配的所有分区的状态从OnlinePartition变更为OfflinePartition,从而触发分区的重新选举。

扩展知识点__consumer_offsets分区如果进行Leader重新选举,大面积的消费组会触发重平衡,背后的机制:

消费组需要在Broker端进行组协调器选举,选举算法如下:消费组的名称的hashcode与主题 __ consumer_offsets的队列总数取模,取余数,映射成 __consumer_offsets 分区,该分区的leader在哪个broker节点,该节点则会充当消费组的组协调器。

一旦该分区的Leader发生变化,对应的消费组必须重新选举新的组协调器,从而触发消费组的重平衡

3.2 Controller节点被移除

如果zookeeper中移除的broker id 为 Kafka controller,其影响会更大,主要的入口如下图所示:

如果是controller节点会话超时,临时节点/controller节点会被删除,从而会触发Kafka controller选举,最终所有的broker节点都会收到节点/controller的删除、新增或节点数据变化的通知,KafkaController的onControllerFailover方法会被执行,与会将于zookeeper相关的事件监听器重新注册、分区状态机、副本状态机都会停止并重新启动,各个分区会触发自动leader分区选举。

可以这样形容:一朝天子一朝臣,全部重新来过。

3.3 zookeeper会话超时根因排查

查看服务端日志,可以看到如下日志:

核心日志解读:Closed socket connection for client ... 表示连接被客户端主动关闭。

那为什么客户端会主动关闭心跳呢?心跳处理的套路就是客户端需要定时向服务端发送心跳包,服务端在指定时间内没有收到或处理心跳包,则会超时。

要想一探究竟,唯一的办法:阅读源码 ,通过研读Zookeeper客户端源码,发现存在这样一个设计:客户端会把所有的请求先放入一个队列中,然后通过一个发送线程(SendThread)从队列中获取请求,发送到服务端,关键代码如下:

如果存在大量的zk更新操作,心跳包可能会处理不及时,而在出现zookeeper session会话超时之前,集群在大面积ISR扩张与收缩,频繁更新zk,从而触发了客户端端心跳超时,这个问题也可以通过如下代码进行复现:

经过这波分析,由于zookeeper会话超时,导致大量分区重新选举,最终导致消息发送延迟很大,并且消费组大面积重平衡的根本原因就排查清楚了,本期分享就到此为止,我们下期见。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8