说到排序算法,很多同学会想起快速排序、堆排序、冒泡排序这些耳熟能详的算法。了解得深一些的同学,也可能看过例如 Python 的 timsort 以及 C++ intro sort 之类的排序算法。
但是我们也会有很多疑问,例如 Go 语言中使用的快速排序和我们书上学到的快速排序有什么区别呢?如果我们自己写一个快排,会比 Go 语言自带的快吗?排序算法方面业界最新的进展是什么呢,有没有一个算法是最快的?
本篇文章会向大家介绍字节跳动-语言团队在 Go 语言排序算法的实践,我们使用了 pdqsort 算法 + Go1.18 泛型,实现了一个比标准库 API 在几乎所有情况下快 2x ~ 60x 的算法库。
此项改动已经被社区采纳合并进入 Go runtime 当中,成为默认的 unstable 排序算法,预计将会在 Go 1.19 中和大家见面,其中非泛型版本位于标准库 sort,泛型版本位于 exp/slices。
Proposal: https://github.com/golang/go/issues/50154
临时项目地址:https://github.com/zhangyunhao116/pdqsort
Go、Rust、C ++ 的默认 unstable 排序算法虽然名义上叫快速排序(quicksort),但其实质是混合排序算法(hybrid sorting algorithm),它们虽然在大部分情况下会使用快速排序算法,但是也会在不同情况下切换到其他排序算法。
unstable 排序算法意味着在排序过程中,值相等的元素可能会被互相交换位置。
一般来说,常见的混合排序算法,都会在元素较少(这个值一般是 16 ~ 32)的序列中切换成插入排序(insertion sort),尽管插入排序的时间复杂度为 O(n^2),但是其在元素较少时性能基本超越其他排序算法,所以在混合排序算法的方案中被经常使用。
在其他情况下,默认使用快速排序算法。然而,快速排序算法有可能因为 pivot 选择的问题(有些序列 pivot 选择不好,导致性能下降很快)而导致在某些情况下可能到达最坏的时间复杂度 O(n^2),为了保证快速排序算法部分在最坏情况下,我们的时间复杂度仍然为 O(n* logn)。大部分混合排序算法都会在某种情况下转而使用堆排序,因为堆排序在最坏情况下的时间复杂度仍然可以保持 O(n* logn)。
一言以蔽之,目前流行的 unstable 排序算法基本都是在不同的情况下,使用不同的方式排序从而达到最优解。而我们今天介绍的 pdqsort 也是这一思想的延伸。
介绍一些常见的基本的排序算法以及它们的特性。
Average-case:O(n*logn) Bad-case:O(n^2)
经典的 快速排序(quicksort) 主要采用了分治的思想,具体的过程是将一个 array 通过选定一个 pivot(锚点)分成不同的 sub-arrays,选定 pivot 后,使得这个 array 中位于 pivot 左边的元素都小于 pivot,位于 pivot 右边的元素都大于 pivot。由此,pivot 两边构成了两个 sub-arrays,然后对这些 sub-arrays 进行相同的操作(选定 pivot 然后切分)。当某个 sub-array 只有一个元素时,其本身有序,此时便可以退出循环。如此反复,最后得到整体的有序。
我们可以观察到,经典的 quicksort 主要过程就是两步:
总的来说,quicksort 的性能关键点在于选定 pivot,选择 pivot 的好坏直接决定了排序的速度,如果每次 pivot 都被选定为真正的 median(中位数),此时快排的效率是最高的。因此 pivot 的选择重点在于寻找 array 真正的 median,目前所有的 pivot 选择方案都是在寻找一个近似的 median。
为什么 pivot 选定为中位数使得快排效率最高?
详细解释可以参考:https://en.wikipedia.org/wiki/Quicksort#Formal_analysis。简单来说,pivot 如果选定为中位数,则大部分情况下每次 partition 都会形成两个长度基本相同的 sub-arrays,我们只需要 logn 次 partition 就可以使得 array 完全有序,此时时间复杂度为 O(n* logn)。在最坏情况下,我们需要 n-1 次 partition (每次将长度为 L 的 array 分为长度为 1 和 L - 1 的两个 sub-arrays)才能使得 array 有序,此时时间复杂度为 O(n^2)。
我们为何不直接寻找 array 真正的 median?
原因是因为 array 的长度太长的话,寻找真正的 median 是一个非常昂贵的操作(需要存储所有的 items),相比于寻找一个近似的 median 作为 pivot 会消耗更多的资源,如果找到正确 median 的消耗比使用一个近似 median 高的话,这就是一个负优化。折中的方案就是使用一个高性能的近似 median 选择方案。
基本所有针对 quicksort 的改进方案,都是通过改造这两步得到的,例如第一步可以使用多种不同的 pivot 选择方案(见附录),第二步则有诸如 BlockQuickSort 这样通过减少分支预测来提升性能的方案。
插入排序的主要想法是,每一次将一个待排序的元素插入到前方已经排序好的序列中,直到插入所有元素。尽管其平均时间复杂度高达 O(n^2),但是在 array 长度较短(这个值一般是 16 ~ 32)的情况下,在实际应用中拥有良好的性能表现。
堆排序是利用堆结构设计出来的一种排序算法。这个算法有一个非常重要的特性,其在最坏情况下的时间复杂度仍然为 O(n* logn)。故而很多混合排序算法利用了这一特性,将堆排序作为 fall back 的排序算法,使得混合排序算法在最坏情况下的理论时间复杂度仍然为 O(n* logn)。
论文地址:https://arxiv.org/pdf/2106.05123.pdf
pdqsort (pattern-defating quicksort) 是 Rust、C++ Boost 中默认的 unstable 排序算法,其实质为一种混合排序算法,会在不同情况下切换到不同的排序机制,是 C++ 标准库算法 introsort 的一种改进。可以认为是 unstable 混合排序算法的较新成果。
其理想情况下的时间复杂度为 O(n),最坏情况下的时间复杂度为 O(n* logn),不需要额外的空间。
pdqsort 的主要改进在于,其对 common cases (常见的情况)做了特殊优化。因此在这些情况下性能超越了之前算法,并且相比 introsort 在随机序列的排序性能基本保持了一致。例如当序列本身有序、完全逆序、基本有序这些情况下都超越了大部分算法。其主要的思想是,不断判定目前的序列情况,然后使用不同的方式和路径达到最优解。
这里的算法细节描述的是 https://github.com/zhangyunhao116/pdqsort 中的实践,其大致相当于论文中的 PDQ 算法(没有来自 BlockQuickSort 的优化),并且加入了一些参数调整以及借鉴了部分其他 pdqsort 的实践优化。
注意,不同 pdqsort 实践中会有一些细微差异(因为语言以及接口的关系),不过其总体思想是一致的。
pdqsort C++ 版本性能对比,位于 https://github.com/orlp/pdqsort
为了更好地解析 pdqsort 算法,我们先来描述下其主要流程。pdqsort 就是下面三种情况的不断循环,根据序列长度以及是否是最坏情况,每个 array 都会使用下面三种方法之一进行排序(有优先级,尽可能使用排在前面的方式)
limit
== 0),则后续排序都使用 heap sort 来保证最坏情况时间复杂度为 O(n*logn)。图中浅黄色虚线框代表此步骤为可选项,即算法会根据情况(以下变量)来决定是否执行。
下列变量代表 pdqsort 进行本次循环排序的情况,用于帮助算法来猜测需要排序的 array 的状态,来决定某些步骤是否需要进行
wasBalanced
: Bool, 代表上次 partition 是否平衡。在 pivot 和真正的 median 很接近时我们认为是平衡的(true),此变量可以用 partition 后的 pivot index 同 array 两端的距离来判定。wasPartitioned
: Bool, 如果为真,则代表上次 partition 没有交换任何元素(即上次 partition 分割的是一个本身已经有序的 array)。limit
: int,如果为 0,则后续对 unsorted array 的排序都会使用 heap sort 而不是 quick sort。这种情况发生在 quicksort 有很多次选择的 pivot 和真正的 median 差距很大,从而导致 partition 后的两个 sub-arrays 长度相差较大的场景中。limit
的初始值是根据待排序 array 的长度计算出来的,每次发现快排策略效果不佳时,即 !wasBalanced
为真,则使得 limit
减小 1。3-1. 应对可能的最坏情况,即实现中的breakPatterns
。此时会判断 wasBalanced 是否为 true,如果不平衡(false),则随机交换几个元素,破坏一些可能造成 pivot 与 median 相差较大的特殊情况。
3-2. pivot 的选择,即实现中的 choosePivot
。函数同时返回两个值,pivotidx 和 likelySorted,前者是 pivot 在此 array 的 index(索引),后者代表着选择 pivot 的过程中,是否可以大概率认定这个 array 已经为有序。
3-3. 应对几乎有序的情况,即实现中的 partialInsertionSort
。如果 wasBalanced && wasPartitioned && likelySorted
为 true,则代表此 array 有非常大的可能是一个有序序列。此时我们使用 partial insertion sort 的排序算法,其原理和 insertion sort 大致相当,只是多了一个尝试次数,即只会对有限的元素进行插入排序,增加这个限制是为了避免猜测错误导致消耗大量时间。如果达到尝试次数时 array 仍未有序,则退出。如果在尝试次数之前发现所有元素有序,则可以直接返回。
3-4. 应对重复元素较多的情况,即实现中的 partitionEqual
。如果 pred 存在,并且和本次选中的 pivot 值相等(pred 是之前 array 的 pivot,即目前 array 中的最小值,因为与 pivot 重复的元素只可能出现在 partition 后的两个 sub-arrays 其中之一),说明重复元素很可能较多,则调用 partitionEqual
然后继续进行下次循环,使用这种方法将重复元素提前放到一起,因为多次选定重复元素作为 pivot 会使得 partition 的效率较低。
3-5. partition,使用 pivot 来分割 array,即实现中 partition
。此函数和一般快排的 partition 相比基本相同,区别在于其会检测序列是否本身就是有序的(即 partition 时没有交换任何元素)。
这一步的作用是解决一些会导致现有 pivot 选择方案表现很差的情况,所以当上次 partition 的 pivot 选择不好时(表现为最终 pivot 的位置离 array 两端之一很近),此时会随机交换几个元素来避免一些极端情况。同时,此步骤还会将 limit
减去 1,说明上次 pivot 的选取方案不够好(当 limit
为 0 时使用 heapsort 而不是快排方案来进行排序)。
附录中有关于 pivot 选择方案的详细介绍。
假设 array 的长度为 L,SHORTEST_MEDIAN_OF_MEDIANS 值为 50。这里根据长度分为三种情况:
此方法还会判断这个 array 是否很可能已经有序,例如当第三种情况时,如果发现 a a-1 a+1 这三个值中,a 恰好是中间值(b,c 也同样如此),则说明元素在这些地方都局部有序,所以这个 array 很可能是已经有序的。如果每次都发现,a a-1 a+1 这三个值都是逆序排列(b,c 也同样如此),则说明元素在这些地方都局部逆序,整个 array 很可能是完全逆序的。此时的策略是将整个 array 翻转,这样有很大概率使得整个 array 几乎有序。
Go 1.18 的泛型在这种情况下有较大的性能提升并且增加了可维护性,同样的算法在经过泛型改造后能得到 2x 的性能提升。这一点我们通过观察 pdqsort 泛型版本,以及 pdqsort (with sort.Interface) 的版本性能对比可以观察出来。
在可维护性方面,通过泛型的类型约束抽象了所有可比对的基本类型,不需要使用复杂的代码生成技术。
在性能方面,泛型由于有了类型参数,可以在编译期生成大量代码,免去了使用 sort.Interface
带来的抽象开销。
在纯粹的算法层面,即 pdqsort (with sort.Interface) ,pdqsort 在完全随机的情况下和原有算法(类似于 IntroSort)性能几乎一致(非泛型版本,因为需要兼容 sort.Interface
)。在常见的场景下(例如序列有序|几乎有序|逆序|几乎逆序|重复元素较多)等情况下,会比原有的算法快 1 ~ 30 倍。
因此,我们同样向 Go 官方提议将 pdqsort 应用在 sort.Sort 中,相关的 issue 讨论位于:https://github.com/golang/go/issues/50154
Go 原有的算法类似于 introsort,其通过递归次数来决定是否切换到 fall back 算法,而 pdqsort 使用了另一种计算方式(基于序列长度),使得切换到 fall back 算法的时机更加合理。
因为 BlockQuickSort 的优化基本来自减少分支预测,原理是在 partition 一个长序列的时候,先存储需要交换的元素,后续统一放到真正的序列中。经过实际性能测试,发现这一优化在 Go 上并不成立,甚至是一个负优化。原因可能由于 Go 是一门 heap-allocate 的语言,对于此类优化并不敏感。并且对于减少分支预测,Go 的编译器在某些情况下并不能优化到相应指令(CMOV)。
目前大部分工业界使用的 unstable 排序算法,基本上都从过去教科书中单一的排序算法转变成混合排序算法,来应对实践场景中各式各样的序列。
pdqsort 依靠其在常见场景相比之前算法的性能优势,逐渐成为 unstable 排序算法的主流实现。基于 Go1.18 带来的泛型,使得排序算法的实现被大大简化,也给予了我们实现新算法的可能。但是 pdqsort 也不是万能灵药,在某些情况下,其他的算法依然保持着优势(例如 Python 标准库的 timsort 在混合升序&&降序的场景优于 pdqsort)。不过在大部分情况下,pdqsort 依靠其对于不同情况的特定优化,成为了 unstable 算法较好的选择。
这里简单介绍不同的 pivot 选择方案。最好的 pivot 选择方案就是使用一个高性能的近似 median 选择方案,在准确度和性能上达到平衡。假设我们需要排序的元素为 [4,3,2,1]
,我们需要将其排列为升序,即 [1,2,3,4]
。
这是我们实现快排时最简单的方法,即选取 array 的首个元素作为 pivot。
[4,3,2,1]
。选定 4 为 pivot,由于左边没有元素,所以会从最右边开始找,找到第一个比 4 小的元素,即 1 作交换。[1,3,2,4]
。选定 1 为 pivot,同理。希望从右边找到第一个比 1 小的元素,由于 1 已经是最小的值,此轮不会交换任何元素。[1,3,2,4]
。选定 3 为 pivot,同理。将 2 和 3 互换。[1,2,3,4]
。得到结果。可以看到,选择首个元素的方式在 array 为逆序的情况下,每轮 partition 只将问题的规模减小了 1,即每次只能确定一个元素的最终位置。这种简单的方法在面对极端情况时效果并不好,在完全逆序的情况下达到了快排的最坏情况。
这个方法是分别取最左边、最右边、中间三个值,然后选出其中间值作为 pivot。例如 [4,3,2,1]
,我们会选取 4 3 1
然后选择其中的 3
作为 pivot。这种方式相比于首个元素的方式会更加合理,因为采样了多个元素,不容易受到一些极端情况的影响,往往会比首个元素的方式有更好的效果。
stackoverflow discussion:
https://stackoverflow.com/questions/7559608/median-of-three-values-strategy
这个方法的原理其实和 median of three 相似,不同的地方在于加大了 pivot 的采样范围,在 array 长度较长的情况下理论表现会更好。其采样步骤是先将 array 分为 n/5 个 sub-arrays,n 为 array 的长度。然后将这些 sub-arrays 的 medians 都取出,选取这些 medians 中的 median,同样的方式如此反复,最后得到一个 median of medians 作为最后的 pivot。
stackoverflow discussion:
https://stackoverflow.com/questions/5605916/quick-sort-median-selection
Median-finding Algorithm:
https://brilliant.org/wiki/median-finding-algorithm/#citation-1
此方法其实是 median of three 的改进,我们在 median of three 会取三个元素,而 Tukey’s median of medians 会取三个元素及其相邻两个元素的 median(例如 median of three 取了 a,b,c 则此方案会选择 a-1 a a+1 取这三个值的 median),然后再取这个三个 medians 的 median。即此方案会采样其中 9 个元素,相比于 median of three 多了三倍的采样率,所以此方法也叫做 Tukey’s ninther。
See
https://www.johndcook.com/blog/2009/06/23/tukey-median-ninther/
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8