自从步入现代 C++时代开始,C++语言标准形成了三年一个版本的惯例:C++11 标志着现代 C++的开端,C++14 在 11 的基础上查缺补漏,并未加入许多新特性,而 C++17 作为 C++11 后的第一个大版本,标志着现代 C++逐渐走向成熟。WXG 编译器升级到 gcc7.5 已有一段时间,笔者所在项目组也已经将全部代码升级到 C++17。在使用了 C++17 一年多之后,笔者总结了 C++17 在业务代码中最好用的十个特性。
注 1:本文只包含 wxg 的 gcc7.5 支持的特性,[Execution Policy] , File System等暂不支持的特性不包含在内。
注 2:本文只包含应用于业务逻辑的特性,[Fold Expression] , [Mathematical Special Functions] 等适用于元编程和科学计算的特性并不包含。
笔者将这些特性大体上分为三类:语法糖、性能提升和类型系统。
这里所说的语法糖,并不是严格意义上编程语言级别的语法糖,还包括一些能让代码更简洁更具有可读性的函数和库:
c++17 最便利的语法糖当属结构化绑定。结构化绑定是指将 array、tuple 或 struct 的成员绑定到一组变量*上的语法,最常用的场景是在遍历 map/unordered_map 时不用再声明一个中间变量了:
// pre c++17
for(const auto& kv: map){
const auto& key = kv.first;
const auto& value = kv.second;
// ...
}
// c++17
for(const auto& [key, value]: map){
// ...
}
*: 严格来说,结构化绑定的结果并不是变量,c++标准称之为名字/别名,这也导致它们不允许被 lambda 捕获,但是 gcc 并没有遵循 c++标准,所以以下代码在 gcc 可以编译,clang 则编译不过
for(const auto& [key, value]: map){
[&key, &value]{
std::cout << key << ": " << value << std::endl;
}();
}
在 clang 环境下,可以在 lambda 表达式捕获时显式引入一个引用变量通过编译
for(const auto& [key, value]: map){
[&key = key, &value = value]{
std::cout << key << ": " << value << std::endl;
}();
}
另外这条限制在 c++20 中已经被删除,所以在 c++20 标准中 gcc 和 clang 都可以捕获结构化绑定的对象了。
在 c++17 以前,构造std::pair/std::tuple
时必须指定数据类型或使用std::make_pair/std::make_tuple
函数,c++17 为std::pair/std::tuple
新增了推导规则,可以不再显示指定类型。
// pre c++17
std::pair<int, std::string> p1{3.14, "pi"s};
auto p1 = std::make_pair(3.14, "pi"s);
// c++17
std::pair p3{3.14, "pi"s};
if constexpr 语句是编译期的 if 判断语句,在 C++17 以前做编译期的条件判断往往通过复杂[SFINAE] 机制或模版重载实现,甚至嫌麻烦的时候直接放到运行时用 if 判断,造成性能损耗,if constexpr 大大缓解了这个问题。比如我想实现一个函数将不同类型的输入转化为字符串,在 c++17 之前需要写三个函数去实现,而 c++17 只需要一个函数。
// pre c++17
template <typename T>
std::string convert(T input){
return std::to_string(input);
}
// const char*和string进行特殊处理
std::string convert(const char* input){
return input;
}
std::string convert(std::string input){
return input;
}
// c++17
template <typename T>
std::string convert(T input) {
if constexpr (std::is_same_v<T, const char*> ||
std::is_same_v<T, std::string>) {
return input;
} else {
return std::to_string(input);
}
}
c++17 支持在 if 的判断语句之前增加一个初始化语句,将仅用于 if 语句内部的变量声明在 if 内,有助于提升代码的可读性。且对于 lock/iterator 等涉及并发/RAII 的类型更容易保证程序的正确性。
// c++ 17
std::map<int, std::string> m;
std::mutex mx;
extern bool shared_flag; // guarded by mx
int demo()
{
if (auto it = m.find(10); it != m.end()) { return it->second.size(); }
if (char buf[10]; std::fgets(buf, 10, stdin)) { m[0] += buf; }
if (std::lock_guard lock(mx); shared_flag) { unsafe_ping(); shared_flag = false; }
if (int s; int count = ReadBytesWithSignal(&s)) { publish(count); raise(s); }
if (const auto keywords = {"if", "for", "while"};
std::ranges::any_of(keywords, [&tok](const char* kw) { return tok == kw; }))
{
std::cerr << "Token must not be a keyword\n";
}
}
shared_mutex
是 c++的原生读写锁实现,有共享和独占两种锁模式,适用于并发高的读场景下,通过 reader 之前共享锁来提升性能。在 c++17 之前,只能自己通过独占锁和条件变量自己实现读写锁或使用 c++14 加入的性能较差的std::shared_timed_mutex
。以下是通过shared_mutex
实现的线程安全计数器:
// c++17
class ThreadSafeCounter {
public:
ThreadSafeCounter() = default;
// Multiple threads/readers can read the counter's value at the same time.
unsigned int get() const {
std::shared_lock lock(mutex_);
return value_;
}
// Only one thread/writer can increment/write the counter's value.
unsigned int increment() {
std::unique_lock lock(mutex_);
return ++value_;
}
// Only one thread/writer can reset/write the counter's value.
void reset() {
std::unique_lock lock(mutex_);
value_ = 0;
}
private:
mutable std::shared_mutex mutex_;
unsigned int value_ = 0;
};
std::string_view
顾名思义是字符串的“视图”,类成员变量包含两个部分:字符串指针和字符串长度,std::string_view 涵盖了 std::string 的所有只读接口。std::string_view 对字符串不具有所有权,且兼容 std::string 和 const char*两种类型。
c++17 之前,我们处理只读字符串往往使用const std::string&
,std::string
有两点性能优势:
const char*
, const std::string&
需要进行一次内存分配,将字符串拷贝到堆上,而std::string_view
则可以避免。std::string::substr
也需要进行拷贝和分配内存,而std::string_view::substr
则不需要,在处理大文件解析时,性能优势非常明显。// from https://stackoverflow.com/a/40129046
// author: Pavel Davydov
// string_view的remove_prefix比const std::string&的快了15倍
string remove_prefix(const string &str) {
return str.substr(3);
}
string_view remove_prefix(string_view str) {
str.remove_prefix(3);
return str;
}
static void BM_remove_prefix_string(benchmark::State& state) {
std::string example{"asfaghdfgsghasfasg3423rfgasdg"};
while (state.KeepRunning()) {
auto res = remove_prefix(example);
// auto res = remove_prefix(string_view(example)); for string_view
if (res != "aghdfgsghasfasg3423rfgasdg") {
throw std::runtime_error("bad op");
}
}
}
在向std::map/unordered_map
中插入元素时,我们往往使用emplace
,emplace
的操作是如果元素 key 不存在,则插入该元素,否则不插入。但是在元素已存在时,emplace
仍会构造一次待插入的元素,在判断不需要插入后,立即将该元素析构,因此进行了一次多余构造和析构操作。c++17 加入了try_emplace
,避免了这个问题。同时 try_emplace 在参数列表中将 key 和 value 分开,因此进行原地构造的语法比emplace
更加简洁
std::map<std::string, std::string> m;
// emplace的原地构造需要使用std::piecewise_construct,因为是直接插入std::pair<key, value>
m.emplace(std::piecewise_construct,
std::forward_as_tuple("c"),
std::forward_as_tuple(10, 'c'));
// try_emplace可以直接原地构造,因为参数列表中key和value是分开的
m.try_emplace("c", 10, 'c')
同时,c++17 还给std::map/unordered_map
加入了insert_or_assign
函数,可以更方便地实现插入或修改语义。
c++17 进一步完备了 c++的类型系统,终于加入了众望所归的类型擦除容器([Type Erasure] 和代数数据类型([Algebraic Data Type] )
std::any
是一个可以存储任何可拷贝类型的容器,C 语言中通常使用void*
实现类似的功能,与void*
相比,std::any
具有两点优势:
std::any
更安全:在类型 T 被转换成void*
时,T 的类型信息就已经丢失了,在转换回具体类型时程序无法判断当前的void*
的类型是否真的是 T,容易带来安全隐患。而std::any
会存储类型信息,std::any_cast
是一个安全的类型转换。std::any
管理了对象的生命周期,在std::any
析构时,会将存储的对象析构,而void*
则需要手动管理内存。std::any
应当很少是程序员的第一选择,在已知类型的情况下,std::optional
, std::variant
和继承都是比它更高效、更合理的选择。只有当对类型完全未知的情况下,才应当使用std::any
,比如动态类型文本的解析或者业务逻辑的中间层信息传递。
std::optional<T>
代表一个可能存在的 T 值,对应 Haskell 中的Maybe
和 Rust/OCaml 中的option
,实际上是一种[Sum Type] 。常用于可能失败的函数的返回值中,比如工厂函数。在 C++17 之前,往往使用T*
作为返回值,如果为nullptr
则代表函数失败,否则T*
指向了真正的返回值。但是这种写法模糊了所有权,函数的调用方无法确定是否应该接管T*
的内存管理,而且T*
可能为空的假设,如果忘记检查则会有 SegFault 的风险。
// pre c++17
ReturnType* func(const std::string& in) {
ReturnType* ret = new ReturnType;
if (in.size() == 0)
return nullptr;
// ...
return ret;
}
// c++17 更安全和直观
std::optional<ReturnType> func(const string& in) {
ReturnType ret;
if (in.size() == 0)
return nullopt;
// ...
return ret;
}
std::variant<T, U, ...>
代表一个多类型的容器,容器中的值是制定类型的一种,是通用的 Sum Type,对应 Rust 的enum
。是一种类型安全的union
,所以也叫做tagged union
。与union
相比有两点优势:
std::vector
和std::string
就等复杂类型则需要用户手动管理内存。union
+enum
来实现相同功能。通过使用std::variant<T, Err>
,用户可以实现类似 Rust 的std::result
,即在函数执行成功时返回结果,在失败时返回错误信息,上文的例子则可以改成:
std::variant<ReturnType, Err> func(const string& in) {
ReturnType ret;
if (in.size() == 0)
return Err{"input is empty"};
// ...
return {ret};
}
需要注意的是,c++17 只提供了一个库级别的 variant 实现,没有对应的[模式匹配(Pattern Matching)] 机制,而最接近的std::visit
又缺少编译器的优化支持,所以在 c++17 中std::variant
并不好用,跟 Rust 和函数式语言中出神入化的 Sum Type 还相去甚远,但是已经有许多围绕std::variant
的提案被提交给 c++委员会探讨,包括模式匹配,std::expected
等等。
总结一下,c++17 新增的三种类型给 c++带来了更现代更安全的类型系统,它们对应的使用场景是:
std::any
适用于之前使用void*
作为通用类型的场景。std::optional
适用于之前使用nullptr
代表失败状态的场景。std::variant
适用于之前使用union
的场景。以上是笔者在生产环境中最常用的 c++17 特性,除了本文描述的十个特性外,c++17 还添加了如[lambda 值捕获*this] , [钳夹函数 std::clamp()] , 强制检查返回值[[nodiscard]]等非常易用的特性,本文篇幅有限不做赘述,欢迎有兴趣的读者自行探索。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8