错误处理一直以一是编程必需要面对的问题,错误处理如果做的好的话,代码的稳定性会很好。不同的语言有不同的出现处理的方式。Go 语言也一样,在本篇文章中,我们来讨论一下 Go 语言的错误处理方式。
错误是程序中可能出现的问题,比如连接数据库失败,连接网络失败等,在程序设计中,错误处理是业务的一部分。
Go 内建一个 error 接口类型作为 go 的错误标准处理
http://golang.org/pkg/builtin/#error
// 接口定义
type error interface {
Error() string
}
http://golang.org/src/pkg/errors/errors.go
// 实现
func New(text string) error {
return &errorString{text}
}
type errorString struct {
s string
}
func (e *errorString) Error() string {
return e.s
}
异常是指在不该出现问题的地方出现问题,是预料之外的,比如空指针引用,下标越界,向空 map 添加键值等
对于真正意外的情况,那些表示不可恢复的程序错误,不可恢复才使用 panic。对于其他的错误情况,我们应该是期望使用 error 来进行判定
go 源代码很多地方写 panic, 但是工程实践业务代码不要主动写 panic,理论上 panic 只存在于 server 启动阶段,比如 config 文件解析失败,端口监听失败等等,所有业务逻辑禁止主动 panic,所有异步的 goroutine 都要用 recover 去兜底处理。
直观的返回 error
// ZooTour struct
type ZooTour interface {
Enter() error
VisitPanda(panda *Panda) error
Leave() error
}
// 分步处理,每个步骤可以针对具体返回结果进行处理
func Tour(t ZooTour1, panda *Panda) error {
if err := t.Enter(); err != nil {
return errors.WithMessage(err, "Enter failed.")
}
if err := t.VisitPanda(); err != nil {
return errors.WithMessage(err, "VisitPanda failed.")
}
// ...
return nil
}
将 error 保存到对象内部,处理逻辑交给每个方法,本质上仍是顺序执行。标准库的
bufio
、database/sql
包中的Rows
等都是这样实现的,有兴趣可以去看下源码
type ZooTour interface {
Enter() error
VisitPanda(panda *Panda) error
Leave() error
Err() error
}
func Tour(t ZooTour, panda *Panda) error {
t.Enter()
t.VisitPanda(panda)
t.Leave()
// 集中编写业务逻辑代码,最后统一处理error
if err := t.Err(); err != nil {
return errors.WithMessage(err, "ZooTour failed")
}
return nil
}
分离关注点 - 遍历访问用数据结构定义运行顺序,根据场景选择,如顺序、逆序、二叉树树遍历等。运行逻辑将代码的控制流逻辑抽离,灵活调整。kubernetes 中的 visitor 对此就有很多种扩展方式,分离了数据和行为,有兴趣可以去扩展阅读
type Walker interface {
Next MyFunc
}
type SliceWalker struct {
index int
funs []MyFunc
}
func NewEnterFunc() MyFunc {
return func(t ZooTour) error {
return t.Enter()
}
}
func BreakOnError(t ZooTour, walker Walker) error {
for {
f := walker.Next()
if f == nil {
break
}
if err := f(t); err := nil {
// 遇到错误break或者continue继续执行
}
}
}
上面这三个例子,是 Go 项目处理错误使用频率最高的三种方式,也可以应用在 error 以外的处理逻辑。
// controller
if err := mode.ParamCheck(param); err != nil {
log.Errorf("param=%+v", param)
return errs.ErrInvalidParam
}
return mode.ListTestName("")
// service
_, err := dao.GetTestName(ctx, settleId)
if err != nil {
log.Errorf("GetTestName failed. err: %v", err)
return errs.ErrDatabase
}
// dao
if err != nil {
log.Errorf("GetTestDao failed. uery: %s error(%v)", sql, err)
}
Go 相关的错误处理方法很多,但大多为过渡方案,这里就不一一分析了(类似 github.com/juju/errors 库,有兴趣可以了解)。这里我以 github.com/pkg/errors 为例,这个也是官方 Proposal 的重点参考对象。
github.com/pkg/errors 包主要包含以下几个方法,如果我们要新生成一个错误,可以使用 New
函数,生成的错误,自带调用堆栈信息。如果有一个现成的 error
,我们需要对他进行再次包装处理,这时候有三个函数可以选择(WithMessage/WithStack/Wrapf)。其次,如果需要对源错误类型进行自定义判断可以使用 Cause,可以获得最根本的错误原因。
// 新生成一个错误, 带堆栈信息
func New(message string) error
// 只附加新的信息
func WithMessage(err error, message string) error
// 只附加调用堆栈信息
func WithStack(err error) error
// 同时附加堆栈和信息
func Wrapf(err error, format string, args ...interface{}) error
// 获得最根本的错误原因
func Cause(err error) error
以常见的一个三层架构为例:
if err != nil {
if errors.Is(err, sql.ErrNoRows) {
return nil, errors.Wrapf(ierror.ErrNotFound, "query:%s", query)
}
return nil, errors.Wrapf(ierror.ErrDatabase,
"query: %s error(%v)", query, err)
}
bills, err := a.Dao.GetName(ctx, param)
if err != nil {
return result, errors.WithMessage(err, "GetName failed")
}
// 请求响应组装
func (Format) Handle(next ihttp.MiddleFunc) ihttp.MiddleFunc {
return func(ctx context.Context, req *http.Request, rsp *ihttp.Response) error {
format := &format{Time: time.Now().Unix()}
err := next(ctx, req, rsp)
format.Data = rsp.Data
if err != nil {
format.Code, format.Msg = errCodes(ctx, err)
}
rsp.Data = format
return nil
}
}
// 获取错误码
func errCodes(ctx context.Context, err error) (int, string) {
if err != nil {
log.CtxErrorf(ctx, "error: [%+v]", err)
}
var myError = new(erro.IError)
if errors.As(err, &myError) {
return myError.Code, myError.Msg
}
return code.ServerError, i18n.CodeMessage(code.ServerError)
}
_, err := os.Open(path)
if err != nil {
return errors.Wrapf(err, "Open failed. [%s]", path)
}
最终效果样例:
官方的 ErrGroup 非常简单,其实就是解决小型多任务并发任务。基本用法 golang.org/x/sync/errgroup 包下定义了一个 Group struct,它就是我们要介绍的 ErrGroup 并发原语,底层也是基于 WaitGroup 实现的。在使用 ErrGroup 时,我们要用到三个方法,分别是 WithContext、Go 和 Wait。
1 . 每个请求都开启 goroutinue,会有一定的性能开销。
2 . 野生的 goroutinue,生命周期管理比较困难。
3 . 收到类似 SIGQUIT 信号时,无法平滑退出。
errgroup
函数签名type Group
func WithContext(ctx context.Context) (*Group, context.Context)
func (g *Group) Go(f func() error)
func (g *Group) Wait() error
整个包就一个 Group 结构体
注意这里有一个坑,在后面的代码中不要把 ctx 当做父 context 又传给下游,因为 errgroup 取消了,这个 context 就没用了,会导致下游复用的时候出错
func TestErrgroup() {
eg, ctx := errgroup.WithContext(context.Background())
for i := 0; i < 100; i++ {
i := i
eg.Go(func() error {
time.Sleep(2 * time.Second)
select {
case <-ctx.Done():
fmt.Println("Canceled:", i)
return nil
default:
fmt.Println("End:", i)
return nil
}})}
if err := eg.Wait(); err != nil {
log.Fatal(err)
}
}
errgroup
拓展包[B 站拓展包]
type Group struct {
err error
wg sync.WaitGroup
errOnce sync.Once
workerOnce sync.Once
ch chan func(ctx context.Context) error
chs []func(ctx context.Context) error
ctx context.Context
cancel func()
}
func WithContext(ctx context.Context) *Group {
return &Group{ctx: ctx}
}
func (g *Group) Go(f func(ctx context.Context) error) {
g.wg.Add(1)
if g.ch != nil {
select {
case g.ch <- f:
default:
g.chs = append(g.chs, f)
}
return
}
go g.do(f)
}
GOMAXPROCS
函数其实是起了一个并发池来控制协程数量,传入最大协程数量进行并发消费管道里的函数签名func (g *Group) GOMAXPROCS(n int) {
if n <= 0 {
panic("errgroup: GOMAXPROCS must great than 0")
}
g.workerOnce.Do(func() {
g.ch = make(chan func(context.Context) error, n)
for i := 0; i < n; i++ {
go func() {
for f := range g.ch {
g.do(f)
}
}()
}
})
}
整个流程梳理下来其实就是启动一个固定数量的并发池消费任务,Go 函数其实是向管道中发送任务的生产者,这个设计中有意思的是他的协程生命周期的控制,他的控制方式是每发送一个任务都进行 WaitGroup 加一,在最后结束时的 wait 函数中进行等待,等待所有的请求都处理完才会关闭管道,返出错误。
tips:
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8