图文详解 Java 泛型,写得太好了!

474次阅读  |  发布于2年以前

泛型—— 一种可以接收数据类型的数据类型,本文将通俗讲解Java泛型的优点、方法及相关细节。

一、泛型的引入

我们都知道,继承是面向对象的三大特性之一,比如在我们向集合中添加元素的过程中add()方法里填入的是Object类,而Object又是所有类的父类,这就产生了一个问题——添加的类型无法做到统一 由此就可能产生在遍历集合取出元素时类型不统一而报错问题。

例如:我向一个ArrayList集合中添加Person类的对象,但是不小心手贱添加了一个Boy类的对象,这就会导致如下结果

传统的方式不能对加入到集合ArrayList中的数据类型进行约束(不安全)遍历的时候,需要进行类型转换,如果集合中的数据量较大,对效率有影响 这就极大地降低了程序的健壮性,因此设计者针对此问题引入了泛型!

二、使用泛型的好处

1.提升了程序的健壮性和规范性

针对上述问题,当我们采用泛型就会显得非常简单,只需要在编译类型后利用泛型指定一个特定类型,编译器就会自动检测出不符合规范的类并抛出错误提示

2.编译时,检查添加元素的类型,提高了安全性

3.减少了类型转换的次数,提高效率

4 .在类声明时通过一个标识可以表示属性类型、方法的返回值类型、参数类型

class Person<E> {
    E s;   //可以是属性类型
    public Person(E s) {  //可以是参数类型
        this.s = s;
    }
    public E f() { //可以是返回类型
        return s;
    }
    public void show() {
        System.out.println(s.getClass());  //显示S的运行类型
    }
}

可以这样理解:上述的class Person< E >中的“E”相当于这里的E是一个躯壳 占位用的 以后定义的时候程序员可以自己去自定义。

[就像这样]

public static void main(String[] args) {
    Person<String> person1 = new Person<String>("xxxx");// E->String
    person.show();
    Person<Integer> person2 = new Person<Integer>(123); // E->Integer
    person.show();
}
运行结果:
class java.lang.String
class java.lang.Integer

[三、泛型常见用法]

[1.定义泛型接口]

[曾经写接口的时候都没有定义泛型,它默认的就是Object类,其实这样写是不规范的!]

[如果说接口的存在是一种规范,那泛型接口就是规范中的规范]

interface Im<U,R>{
    void hi(R r);
    void hello(R r1,R r2,U u1,U u2);
    default R method(U u){
        return null;
    }
}

[在上述的泛型接口中已经规定传入其中的必须是U,R类的对象,那么当我们传入其他类的对象时就会报错,如图:]

根据规则,当我们实现接口时,就必须实现他的所有方法,而在这时我们就可以向<U,R>中传入我们自己规定的类。在IDEA中重写接口中的方法时,编译器会自动将<U,R>替换成我们事先规定的类。

2.定义泛型集合

[1.使用泛型方式给HashSet中放入三个学生对象,并输出对象信息]

 HashSet<Student> students = new HashSet<Student>();
 students.add(new Student("懒羊羊",21));
 students.add(new Student("喜羊羊",41));
 students.add(new Student("美羊羊",13));
 for (Student student :students) {
     System.out.println(student);
 }

[上述的 泛型中Student的是我事先定义好的一个类,把它放到其中作为泛型来约束传入的对象,以及在遍历时减少转型的次数提高效率]

[2.使用泛型方式给HashMap中放入三个学生对象,并输出对象信息]

HashMap<String, Student> hm = new HashMap<String, Student>();
// K-> String  V->Student与下面的对应
hm.put("001",new Student("喜羊羊",21));
hm.put("002",new Student("懒羊羊",32));
hm.put("003",new Student("美羊羊",43));
Set<Map.Entry<String,Student>> ek=hm.entrySet();
Iterator<Map.Entry<String, Student>> iterator = ek.iterator();//取出迭代器
while (iterator.hasNext()) {
    Map.Entry<String, Student> next =  iterator.next();
    System.out.println(next.getKey()+" - "+next.getValue());
}

[HashMap是一个双列集合,以[K-V]的方式存储对象,因此在使用泛型时要向其中传入两个类型]

我们都知道使用迭代器遍历HashMap时要先通过entrySet()取出键值对,然后通过转型得到对应的类来得到对象信息。而在使用泛型定义[K-V]就规定了取出的键值对的类型,所以就省去了转型这一步骤,同样也使程序变得简单,高效。

四、泛型使用细节

1.<>中类型规范

2.继承性体现

在给泛型指定具体类型后,可以传入该类型或者其子类类型

P<A> ap = new P<A>(new A());
P<A> ap1 = new P<A>(new B()); //A的子类
class A {}
class B extends A{}

3.简写形式

 P<A> ap = new P(new A());

五、自定义泛型

1.自定义方法使用类声明的泛型

在形参列表中传入的数据类型与泛型不一致时会报错,体现规范性

public static void main(String[] args) {
    U<String, Double, Integer> u = new U<>();
    u.hi("hello", 1.0);  //X->String Y->Double
}
class U<X, Y, Z> {
    public void hi(X x, Y y) {} //使用类声明的泛型
}

2.自定义泛型方法

public static void main(String[] args) {
    U<String, Double, Integer> u = new U<>();
    u.m1("xx",22);
    //当调用方法时,传入参数编译器会自己确定类型 会自动装箱
}
class U<X, Y, Z> {
    public <X,Y> void m1(X x,Y y){} //自定义泛型方法
}

这里的自动装箱很有意思,他是在三个类型中自动匹配当前输入的数据类型,也不用考虑顺序问题,如图所示

3.注意事项

①泛型数组不能初始化,因为数组在 new 不能确定A 的类型,就无法在内存开空间

错误写法: A[] a=new A[];

②静态方法不能使用类定义的泛型

原因是静态成员是和类相关的,在类加载时,对象还没有创建所以,如果静态方法和静态属性使用了泛型,JVM就无法完成初始化。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8