进入 WebXR 的世界

388次阅读  |  发布于2年以前

随着元宇宙的兴起,VR和AR技术再次回到同学们的视野。

比起完全是0%支持率的WebGPU,作为WebVR技术的后继者,WebXR Device API以0%+71.08%的支持率展示了对于一个新的feature的期待。 面对越来越碎片化的移动端生态,Web标准作为可能是唯一的跨平台工具,在生态中的重要性不言而喻。

如果想要学习WebXR,从哪里入手呢?别急,虽然WebXR和WebGPU还都不成熟,但是现有的技术已经可以让我们实现超出你想象的效果了。

3DoF和6DoF

3DoF是Three Degrees of Freedom的简称,意思是三个自由度。同理,6DoF是Six Degrees of Freedom的简称,表示有6个自由度。

当只有三个自由度的时候,就是我们日常使用的3D模型系统那样的,只能响应旋转操作。千里之行,始于足下。我们就从3个自由度开始。

2D时代,我们通过布局来管理页面的版面。到了3D情况下有些不同。我们先从一个例子来体会一下。

CSS时代我们就是画各种盒子的,所以为了向CSS致敬,我们也画一个3D的盒子。

前端写3D,最主要的框架是Three.js。我们从Three.js的一个封装,A-frame入手。类似于div,在A-frame中使用a-scene来作为一个场景的容器。场景中放各种实体。实体有各种属性。

a-box是一个3D的盒子。a-sky是一个背景天空。

<!DOCTYPE html>
<html>
  <head>
    <script src="https://aframe.io/releases/1.3.0/aframe.min.js"></script>
  </head>
  <body>
    <a-scene>
      <a-box position="0 0 -5" rotation="0 0 0" color="#d4380d"></a-box>
      <a-sky color="#1890ff"></a-sky>
    </a-scene>
  </body>
</html>

显示出来的效果如下:

a-box的position属性是x,y,z的值。其中x的正方向向右,y的正方向向上,z的正方向向外。

rotation也是按x,y,z轴旋转。

我们试下先水平向左转30度。为了区分上图我们换个颜色:

<!DOCTYPE html>
<html>
  <head>
    <script src="https://aframe.io/releases/1.3.0/aframe.min.js"></script>
  </head>
  <body>
    <a-scene>
      <a-box position="0 0 -5" rotation="0 -30 0" color="#eb2f96"></a-box>
      <a-sky color="#1890ff"></a-sky>
    </a-scene>
  </body>
</html>

这个盒子可不是静态的哈,可以拖着玩一玩。

一个场景不能只有孤零零一个元素啊,我们再给我们的盒子上面顶个球。我们给盒子也换个方向,让它右转30度。

<!DOCTYPE html>
<html>
  <head>
    <script src="https://aframe.io/releases/1.3.0/aframe.min.js"></script>
  </head>
  <body>
    <a-scene>
      <a-box position="0 0 -5" rotation="0 30 0" color="#eb2f96"></a-box>
      <a-sphere position="0 1.4 -5" radius="1" color="#389e0d"></a-sphere>
      <a-sky color="#1890ff"></a-sky>
    </a-scene>
  </body>
</html>

效果如下:

这两个元素是一体的,可以一起拖来拖去。

从3D到6D

光有形状太单调了,我们需要像加载2D时代的图片一样的3D模型。

a-assets用来指定资源,每一条资源项目用a-assets-item来表示。

      <a-assets>
        <a-asset-item id="glass" src="./model.glb"></a-asset-item>
      </a-assets>

引用的时候,我们给模型指定类型就好:

    <a-entity position="0 1.5 -4" scale="5.0 5.0 5.0" gltf-model="#glass">          
      </a-entity>

我们给上面的例子的球上面加个眼镜吧:

<!DOCTYPE html>
<html>
  <head>
    <script src="https://aframe.io/releases/1.3.0/aframe.min.js"></script>
  </head>
  <body>
    <a-scene>
      <a-box position="0 0 -5" rotation="0 30 0" color="#eb2f96"></a-box>
      <a-sphere position="0 1.4 -5" radius="1" color="#389e0d"></a-sphere>
      <a-sky color="#1890ff"></a-sky>
      <a-assets>
        <a-asset-item id="glass" src="./model.glb"></a-asset-item>
      </a-assets>
      <a-entity position="0 1.5 -4" scale="5.0 5.0 5.0" gltf-model="#glass"></a-entity>
    </a-scene>
  </body>
</html>

然后我们一脚踢开VR的大门,点击右下解的VR按钮,最终变成下面这样子:

这时候我们需要VR眼镜和支持VR的游览器。需要硬件设备的支持来让我们从3自由度跨越到6自由度。

小伙伴们表示缺少VR设备,我们先按下不表,说说不需要设备就可以使用的AR技术。

比如,上面的图我们通过AR的插件可以支持AR模式:

AR的第一步

把眼镜戴到人脸上

A-frame主要用来处理VR,但是它也是AR的基础。要实现AR,我们再加一个支持AR的库就好了,比如MindAR.

我们下面就把上面加载的小眼镜戴到脑袋上:

我们来看看源代码:

<!DOCTYPE html>
<html>
    <head>
      <meta name="viewport" content="width=device-width, initial-scale=1" />
      <script src="https://cdn.jsdelivr.net/gh/hiukim/mind-ar-js@1.1.4/dist/mindar-face.prod.js"></script>
      <script src="https://aframe.io/releases/1.2.0/aframe.min.js"></script>
      <script src="https://cdn.jsdelivr.net/gh/hiukim/mind-ar-js@1.1.4/dist/mindar-face-aframe.prod.js"></script>
      <style>
        body {
          margin: 0;
        }
        .example-container {
          overflow: hidden;
          position: absolute;
          width: 100%;
          height: 100%;
        }
      </style>
    </head>
    <body>
      <div class="example-container">
        <a-scene mindar-face embedded color-space="sRGB" renderer="colorManagement: true, physicallyCorrectLights" vr-mode-ui="enabled: false" device-orientation-permission-ui="enabled: false">
          <a-assets>
            <a-asset-item id="headModel" src="https://cdn.jsdelivr.net/gh/hiukim/mind-ar-js@1.1.4/examples/face-tracking/assets/sparkar/headOccluder.glb"></a-asset-item>
            <a-asset-item id="glassModel" src="./model.glb"></a-asset-item>
          </a-assets>
          <a-camera active="false" position="0 0 0"></a-camera>
          <a-entity mindar-face-target="anchorIndex: 168">
        <a-gltf-model mindar-face-occluder position="0 -0.3 0.15" rotation="0 0 0" scale="0.06 0.06 0.06" src="#headModel"></a-gltf-model>
          </a-entity>
          <a-entity mindar-face-target="anchorIndex: 10">
        <a-gltf-model rotation="0 -0 0" position="0 -0.5 -0.6" scale="5.8 5.8 5.8" src="#glassModel" visible="true"></a-gltf-model>
          </a-entity>
      </div>
    </body>
  </html>

我们可以看到,我们在a-scene里面引入了mindar-face属性的方式来调用Mind-AR的库。因为用到摄像头,我们增加一个a-camera实体。

头部遮挡器模型

在代码中我们发现一个奇怪的东西,我们引入了一个不知道有什么作用的gltf model.

      <a-gltf-model mindar-face-occluder position="0 -0.3 0.15" rotation="0 0 0" scale="0.06 0.06 0.06" src="#headModel"></a-gltf-model>

这是初涉AR都会遇到的问题。就是我们从摄像头中获取了足够的人脸的信息,但是我们还需要对人头进行3D模型的重建,这样才能跟眼镜的模型一起计算遮挡关系。 在Mind-AR中,通过mindar-face-occluder属性来实现这个遮挡器的模型,如上面的代码所示。

另外,我们是如何将确定在人脸的什么位置呢?

这需要深度学习人脸识别的模型给我们提供帮助。我们使用Tensorflow.js的Face Landmarks Detection模型,它会将人脸识别为468个关键点。

如果看不清的话,我们将头顶部分局部放大一下:

从中我们可以看到,头顶最中央的位置的锚点编号是10,我们的眼镜定位就是选这个点做定位的。

          <a-entity mindar-face-target="anchorIndex: 10">
        <a-gltf-model rotation="0 -0 0" position="0 -0.5 -0.6" scale="5.8 5.8 5.8" src="#glassModel" visible="true"></a-gltf-model>
          </a-entity>

我们当然也可以用两眼中间的168号点作为眼镜定位的点,实际上我们看到,我们的头模型正是以这个168点为锚进行定位的:

          <a-entity mindar-face-target="anchorIndex: 10">
        <a-gltf-model rotation="0 -0 0" position="0 -0.5 -0.6" scale="5.8 5.8 5.8" src="#glassModel" visible="true"></a-gltf-model>
          </a-entity>

事件处理

光有AR代码还不行,我们还得加上事件处理来处理各种玩法。

比如我们想判断AR系统什么时候就绪,可以去监听arReady事件:

         document.addEventListener("DOMContentLoaded", () => {
            const scene = document.querySelector('a-scene');
            const arSystem = scene.systems['mindar-face-system'];

            scene.addEventListener("arReady", (event)=>{
                alert('AR系统加载成功!');
            })
          });

除此之外,arSystem还支持下面的事件:

Mind-AR背后的技术

我们打开控制台,可以看到Mind-AR背后的几个技术:

要支持这种级别的计算,wasm+simd加上webgl2/WebGPU是标配。还没有学习相关技术的同学,敬请关注我的相关系列文章。

另外,前面我们展示的是人脸识别的能力。我们采用其它的深度学习网络,就可以实现其它的锚点功能。比如,我们可以用coco keypoints模型,使用17个点来定位人的姿态。

如果觉得17个点太粗糙,还想针对手和脚做更精确一点的定位,我们可以换成blazepose的32点的模型:

更多的tfjs的模型,还有其它兄弟框架的模型,都可以集成进来一起为我们工作。

比如可以翻翻tfjs的模型库:https://github.com/tensorflow/tfjs-models

用React写Mind-AR

如果不习惯HTML格式的话,Mind-AR也支持React的写法:

import React, { useState } from 'react';
import 'mind-ar/dist/mindar-image.prod.js';
import 'aframe';
import 'mind-ar/dist/mindar-image-aframe.prod.js';
import './App.css';
import MindARViewer from './mindar-viewer';

function App() {
  const [started, setStarted] = useState(false);
  return (
    <div className="App">
      <h1>Example React component with <a href="https://github.com/hiukim/mind-ar-js" target="_blank">MindAR</a></h1>

      <div>
    {!started && <button onClick={() => {setStarted(true)}}>Start</button>}
    {started && <button onClick={() => {setStarted(false)}}>Stop</button>}
      </div>

      {started && (
    <div className="container">
      <MindARViewer/>
      <video></video>
    </div>
      )}
    </div>
  );
}

export default App;

小结

总结Web AR技术,我们主要做三件事:

  1. 图像识别与物体跟踪:这是一门比较成熟的基于深度学习的技术。实践中,我们主要使用tensorflow.js的模型来实现
  2. 建模:就像我们给头进行建模所做的事情一样,要让我们识别出来的视频变成3D模型
  3. 合成:在建模的基础上,将其他的对象一起绘制上去。这方面主要就是结合Three.js, Babylon.js以及VR的A-frame等框架

我们要在手机上落地,还需要对tf.js这样的深度学习引擎,物体识别的算法,还有3D绘图技术进行深度的优化。

此外,3D建模只是模仿外形,我们还没有触及物体的灵魂。后面我们还需要结合数字孪生等技术,让物体数据驱动、智能化,提升交互的效率,更好地服务于业务。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8