用Golang手写一个Container

899次阅读  |  发布于1年以前

前言

Docker 作为一种流行的容器化技术,对于每一个程序开发者而言都具有重要性和必要性。因为容器化相关技术的普及大大简化了开发环境配置、更好的隔离性和更高的安全性,对于部署项目和团队协作而言也更加方便。本文将尝试使用 Go 语言编写一个极简版的容器,以此来了解容器的基本原理。

前置知识储备:

Docker 是基于 Linux 容器技术构建的,因此了解 Linux 操作系统的基本原理、命令和文件系统等知识对于理解本文乃至于Docker 源码非常重要。

了解容器技术的基本概念、原理和实现方式对于理解 Docker 源码非常有帮助。可以参考 Docker 官方文档[2]中的容器概述部分,以及相关的教程和文章。

Docker 的源码主要是用 Go 语言编写的,具体可以参考Go 语言官方文档[3]。

什么是容器化

容器化是作为一种虚拟化技术,允许应用程序和其依赖的资源(如库、环境变量等)被封装在一个独立的运行环境中,称为容器。其核心概念主要包括:

容器使用操作系统级别的虚拟化技术,如Linux的命名空间和控制组(cgroup),实现隔离。每个容器都有自己的进程空间、文件系统、网络和用户空间,使得容器之间相互隔离,不会相互干扰。

相比传统的虚拟机(VM),容器更加轻量级。容器共享主机操作系统的内核,因此启动更快、占用更少的资源。

容器可以在不同的环境中运行,包括开发、测试和生产环境。容器以相同的方式运行,不受底层基础设施的影响,提供了更好的可移植性。

容器可以根据需求进行扩展和缩减。容器编排工具(如Kubernetes)可以自动管理容器的部署、伸缩和负载均衡,提供弹性和可扩展性。

"如果创建一个容器就像系统调用 create_container 一样简单就好了"

Guideline

这里我们粗略的估算一下可能涉及到的步骤会有:导入必要的包、main函数、子进程及其命名空间、挂载文件系统、运行子进程命令等。

我们知道真正的容器实现要复杂得多。它可能会涉及更多的命名空间设置、资源限制、文件系统挂载、网络配置等方面的工作。

但是本文,“删繁就简”,主要是为了了解容器的基本原理。

按照这种实现的思路,我们开始一步步用代码实现:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
)

func main() {
 // 根据命令行参数选择执行不同的操作
 switch os.Args[1] {
 case "run":
  parent() // 执行parent函数
 case "child":
  child() // 执行child函数
 default:
  panic("wat should I do") // 抛出异常,程序无法继续执行
 }
}

func parent() {
 cmd := exec.Command("/proc/self/exe", append([]string{"child"}, os.Args[2:]...)...)
 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

 // 运行命令并检查错误
 if err := cmd.Run(); err != nil {
  fmt.Println("ERROR", err)
  os.Exit(1)
 }
}

func child() {
 cmd := exec.Command(os.Args[2], os.Args[3:]...)
 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

 // 运行命令并检查错误
 if err := cmd.Run(); err != nil {
  fmt.Println("ERROR", err)
  os.Exit(1)
 }
}

func must(err error) {
 // 如果错误不为空,抛出panic异常
 if err != nil {
  panic(err)
 }
}

我们从 main.go 开始,读取第一个参数。如果是 "run",我们就运行Parent函数,如果是 "child",我们就运行子方法。父方法运行"/proc/self/exe",这是一个包含当前可执行文件内存映像的特殊文件。

换句话说,我们重新运行自己,但将 child 作为第一个参数传递。

我们可以借此执行另外一个执行用户请求的程序(在 os.Args[2:] 中提供)。有了这个简单的脚手架,我们就可以创建一个容器了。

命名空间

在 Linux 中,命名空间(Namespace)[6]是一种内核功能,用于隔离进程的资源视图。它允许在同一系统上运行的进程具有独立的资源副本,如进程 ID、网络接口、文件系统挂载点等。这种隔离性可以提供更好的安全性和资源管理。以下是一些常见的 Linux 命名空间类型:

UTS命名空间

Linux UTS Namespace[7]。在 UTS 命名空间中,每个命名空间都有自己的主机名和域名。UTS 命名空间的使用场景包括:容器化和网络隔离等。

要在程序中添加命名空间,我们只需在 parent() 方法的第二行,添加下面的这几行代码,以便于在Go运行子进程时传递给其一些额外的标识。

cmd.SysProcAttr = &syscall.SysProcAttr{
 Cloneflags: syscall.CLONE_NEWUTS | syscall.CLONE_NEWPID | syscall.CLONE_NEWNS、
}

如果现在运行程序,程序将在 UTS、PID 和 MNT 命名空间内运行。

在 Docker 中,根文件系统是由 Docker 镜像提供的,并且在容器启动时被挂载到容器的根目录上。Docker 根文件系统一般具有分层结构、只读性和写时复制等特性。

现在,虽然我们的进程处于一组孤立的命名空间中,但文件系统看起来与主机相同。为了解决这个问题,我们需要以下四行代码来实现根文件系统:

must(syscall.Mount("rootfs", "rootfs", "", syscall.MS_BIND, ""))
 must(os.MkdirAll("rootfs/oldrootfs", 0700))

    // 将当前目录 `/` 移到 `rootfs/oldrootfs` 并将新的 rootfs 目录交换到 `/`
 must(syscall.PivotRoot("rootfs", "rootfs/oldrootfs"))
 must(os.Chdir("/"))

所以完整代码如下:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
)

func main() {
 // 根据命令行参数选择执行不同的操作
 switch os.Args[1] {
 case "run":
  parent() // 执行parent函数
 case "child":
  child() // 执行child函数
 default:
  panic("wat should I do") // 抛出异常,程序无法继续执行
 }
}

func parent() {
 cmd := exec.Command("/proc/self/exe", append([]string{"child"}, os.Args[2:]...)...)

 // 设置子进程的命名空间
 cmd.SysProcAttr = &syscall.SysProcAttr{
  Cloneflags: syscall.CLONE_NEWUTS | syscall.CLONE_NEWPID | syscall.CLONE_NEWNS,
 }

 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

 // 运行命令并检查错误
 if err := cmd.Run(); err != nil {
  fmt.Println("ERROR", err)
  os.Exit(1)
 }
}

func child() {
 // 挂载文件系统
 must(syscall.Mount("rootfs", "rootfs", "", syscall.MS_BIND, ""))
 must(os.MkdirAll("rootfs/oldrootfs", 0700))
 must(syscall.PivotRoot("rootfs", "rootfs/oldrootfs"))
 must(os.Chdir("/"))

 cmd := exec.Command(os.Args[2], os.Args[3:]...)
 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

 // 运行命令并检查错误
 if err := cmd.Run(); err != nil {
  fmt.Println("ERROR", err)
  os.Exit(1)
 }
}

func must(err error) {
 // 如果错误不为空,抛出panic异常
 if err != nil {
  panic(err)
 }
}

是的,至此,基于golang实现的极简版的容器代码已经有了基本骨架。

Cgroups

Linux Cgroups[8] 在 Docker 容器化中起着重要的作用,它提供了对容器的资源限制和隔离,使得容器可以在共享的宿主机上运行而不会相互干扰:

通过 Cgroups,Docker 可以对容器的资源使用进行限制,如 CPU、内存、磁盘和网络等。这样可以避免容器过度占用宿主机资源,保证系统的稳定性和公平性。

Cgroups 提供了容器级别的资源隔离,每个容器都可以被分配和限制其使用的资源。这样,容器之间的资源使用不会互相干扰,一个容器的问题也不会影响其他容器或宿主机。

Docker 使用 Cgroups 对容器进行管理和监控。通过读取和设置 Cgroups 的属性,Docker 可以实时了解容器的资源使用情况,并可以调整资源限制以满足需求。

在cgroup(控制组)这部分,需要注意Cgroup 的挂载和层级结构等限制。

所以我们将Cgrous这一部分加入到代码实现中来如下:

package main

import (
    "fmt"
    "io/ioutil"
    "os"
    "os/exec"
    "strconv"
    "syscall"
)

func main() {
    // 创建 cgroup
    err := createCgroup("mycontainer")
    if err != nil {
        fmt.Println("Failed to create cgroup:", err)
        return
    }

    defer func() {
        // 退出时删除 cgroup
        err := deleteCgroup("mycontainer")
        if err != nil {
            fmt.Println("Failed to delete cgroup:", err)
        }
    }()

    // 限制 CPU 使用率为 50%
    err = setCPULimit("mycontainer", 50)
    if err != nil {
        fmt.Println("Failed to set CPU limit:", err)
        return
    }

    // 在容器中运行命令
    cmd := exec.Command("/bin/bash")
    cmd.Stdin = os.Stdin
    cmd.Stdout = os.Stdout
    cmd.Stderr = os.Stderr
    cmd.SysProcAttr = &syscall.SysProcAttr{
        Cloneflags: syscall.CLONE_NEWNS | syscall.CLONE_NEWPID | syscall.CLONE_NEWUTS | syscall.CLONE_NEWIPC | syscall.CLONE_NEWNET,
        Cgroup:     "mycontainer",
    }

    err = cmd.Run()
    if err != nil {
        fmt.Println("Failed to run command in container:", err)
    }
}

func createCgroup(name string) error {
    cgroupPath := "/sys/fs/cgroup/cpu/" + name
    err := os.Mkdir(cgroupPath, 0755)
    if err != nil {
        return err
    }

    // 将当前进程加入到 cgroup 中
    err = ioutil.WriteFile(cgroupPath+"/tasks", []byte(strconv.Itoa(os.Getpid())), 0644)
    if err != nil {
        return err
    }

    return nil
}

func deleteCgroup(name string) error {
    cgroupPath := "/sys/fs/cgroup/cpu/" + name
    err := os.Remove(cgroupPath)
    if err != nil {
        return err
    }

    return nil
}

func setCPULimit(name string, limit int) error {
    cgroupPath := "/sys/fs/cgroup/cpu/" + name
    err := ioutil.WriteFile(cgroupPath+"/cpu.cfs_quota_us", []byte(strconv.Itoa(limit*1000)), 0644)
    if err != nil {
        return err
    }

    return nil
}

在上面,我们将当前进程加入到新创建的"mycontainer" 的 cgroup,然后,设置该 cgroup 的 CPU 使用率限制为 50%。继而实现在容器中运行一个交互式的 shell。

结语

编写一个容器(container)是一个相当复杂的任务,涉及到许多底层的概念和技术。回顾本文,使用golang一步步“还原”一个mini版的container所需步骤基本如下:

  1. 了解容器技术和相关概念:在开始编写mini容器之前,强烈建议先了解一些容器技术的基本原理,如命名空间(namespaces)、控制组(cgroups)、文件系统隔离等。
  2. 选择编程语言和库:之所以选择使用 Golang 进行容器的编写,因为它提供了强大的并发和系统编程能力。同时,还可以使用一些相关的库,如os/execsyscall
  3. 创建容器的基本结构:首先创建出一个基本的容器结构,该结构将包含容器的信息,如 ID、进程 ID、文件系统等。
  4. 设置容器的命名空间:使用 Golang 的syscall包,设置容器的命名空间,如 PID 命名空间、网络命名空间等。这样可以将容器中的进程与主机系统的进程隔离开来。
  5. 设置容器的文件系统:创建一个文件系统,可以是一个文件夹或镜像文件,用于存储容器内的文件和目录。这里我们可以借助于 Golang 的osio/ioutil包来操作文件系统。
  6. 启动容器中的进程:使用os/exec包,在容器的命名空间中启动一个新的进程, 并指定要运行的可执行文件和参数。
  7. 设置容器的网络:如果想让容器具有网络连接能力,我们还需要设置容器的网络命名空间,并进行相关网络配置。这可能涉及到创建虚拟网络设备、配置 IP 地址等。
  8. 处理容器的生命周期:需要考虑到容器的创建、启动、停止和销毁等生命周期事件。这可能涉及到信号处理、资源清理等操作。

除此之外,还需要考虑到安全性、权限管理、资源限制等多方面因素。

当然,实际的容器实现要更加复杂和完善。在实际项目应用中,我们可能还需要考虑到如文件系统隔离、网络隔离等远比这些复杂的场景。

参考资料

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8