想法源于在一次 Code Review 时,向 Claude 询问哪种写法代码更优雅得来。当时就想能不能让 AI 帮我们辅助做 Code Review?
信息安全合规问题:公司内代码直接调 ChatGPT / Claude 会有安全/合规问题,为了使用 ChatGPT / Claude 需要对代码脱敏,只提供抽象逻辑,这往往更花时间。
三星引入 ChatGPT 不到 20 天,被曝发生 3 次芯片机密泄露[1]
低质量代码耗费时间:达人业务每天至少 10~20 个 MR 需要 CR,虽然提交时 MR 经过 单测 + Lint 过滤了一些低级错误,但还有些问题(代码合理性、经验、MR 相关业务逻辑等)需要花费大量时间,最后可以先经过自动化 CR,再进行人工 CR,可大大提升 CR 效率!
团队 Code Review 规范缺少执行:大部分团队的 Code Review 停留在文档纸面上,成员之间口口相传,并没有一个工具根据规范来严格执行。
一句话介绍就是:基于开源大模型 + 知识库的 Code Review 实践,类似一个代码评审助手(CR Copilot)。
符合公司安全规范,所有代码数据不出内网,所有推理过程均在内网完成。
名词 | 释义 |
---|---|
CR / Code Review | 越来越多的企业都要求研发团队在代码的开发过程中要进行 CodeReview(简称 CR),在保障代码质量的同时,促进团队成员之间的交流,提高代码水平。 |
llm / 大规模语言模型 | 大规模语言模型(Large Language Models,LLMs)是自然语言处理中使用大量文本数据训练的神经网络模型,可以生成高质量的文本并理解语言。如 GPT、BERT 等。 |
AIGC | 利用 NLP、NLG、计算机视觉、语音技术等生成文字、图像、视频等内容。全称是人工智能生成/创作内容(Artificial Intelligence Generated Content);是继 UGC,PGC 后,利用人工智能技术,自动生成内容的生产方式;AIGC 底层技术的发展,驱动围绕不同内容类型(模态)和垂直领域的应用加速涌现。 |
LLaMA | Meta(Facebook)的大型多模态语言模型。 |
ChatGLM | ChatGLM 是一个开源的、支持中英双语的对话语言模型,底座是 GLM 语言模型。 |
Baichuan | Baichuan 2 是百川智能推出的新一代开源大语言模型,采用 2.6 万亿Tokens 的高质量语料训练。 |
Prompt | 一段文本或语句,用于指导机器学习模型生成特定类型、主题或格式的输出。在自然语言处理领域中,Prompt 通常由一个问题或任务描述组成,例如“给我写一篇有关人工智能的文章”、“翻译这个英文句子到法语”等等。在图像识别领域中,Prompt 则可以是一个图片描述、标签或分类信息。 |
langchain | LangChain 是一个开源 Python 库,由 Harrison Chase 开发,旨在支持使用大型语言模型(LLM)和外部资源(如数据源或语言处理系统)开发应用程序。它提供了标准的接口,与其他工具集成,并为常见应用程序提供端到端链 。 |
embedding | 将任意文本映射到固定维度的向量空间中,相似语义的文本,其向量在空间中的位置会比较接近。在 LLM 应用中常用于相似性的文本搜索。 |
向量数据库 (Vector stores) | 存储向量表示的数据库,用于相似性搜索。如 Milvus、Pinecone 等。 |
Similarity Search | 在向量数据库中搜索离查询向量最近的向量,用于检索相似项。 |
知识库 | 存储结构化知识的数据库,LLM 可以利用这些知识增强自己的理解能力。 |
In-context Learning | In-Context Learning 是机器学习领域的一个概念,指不调整模型自身参数,而是在 Prompt 上下文中包含特定问题相关的信息,就可以赋予模型解决新问题能力的一种方式。 |
Finetune / 微调 | 在预训练模型基础上使用特定数据集进行微调,提升模型在某任务上的性能。 |
存储结构化知识的数据库,LLM 可以利用这些知识增强自己的理解能力。In-context LearningIn-Context Learning 是机器学习领域的一个概念,指不调整模型自身参数,而是在 Prompt 上下文中包含特定问题相关的信息,就可以赋予模型解决新问题能力的一种方式。
Finetune / 微调在预训练模型基础上使用特定数据集进行微调,提升模型在某任务上的性能。
完成一次 CR 流程,需要用到如下技术模块:
CR Copilot 功能的核心在于大语言模型基座,基于不同大模型基座生成的 CR 质量也不尽相同。对于 CR 这个场景,我们需要选型的模型满足以下几个条件:
FlagEval 8 月大模型评测榜单(https://flageval.baai.ac.cn/#/trending)
模型后面的
-{n}b
指n*10
亿参数量,比如 13b 就是 130 亿参数,个人试用下来参数量的多少并不能决定效果怎样,根据实际情况来判断。
起初在众多大模型中选择『Llama2-Chinese-13b-Chat[2]』和『chatglm2-6b[3]』、『Baichuan2-13B-Chat[4]』,通过一段时间模型赛马 ,主观上感觉 Llama2 会更适用于 CR 场景,而 ChatGLM2 更像是文科生,对代码评审没有太多建设性建议,但在中文 AIGC 上会比较有优势!
两个模型执行过程中的记录
因大模型合规问题,CR Copilot 会默认使用 ChatGLM2-6B,如有使用 Llama2 模型需求需要向 Meta 申请[5],通过后可使用。
Llama 2 要求企业的月活用户数不超过 7 亿
目前支持的模型可选,仅供参考的评分[6]如下:
大模型基座只包含互联网上的公开数据,对公司内部的框架知识和使用文档并不了解。
举个例子 :公司内有个框架叫 Lynx,让大模型从内部文档中知道『什么是 Lynx?』、『怎么写 Lynx? 』
一图胜千言
这里的『强化模式』会使用向量数据库,并将匹配的知识库片段和问题『什么是 Lynx?』生成 Prompt,发送到 LLM 执行。
有了知识库后,怎样将我们『搜索的问题/代码』在『知识库』中找到『相关度最高的内容』?
答案是通过三个过程:
文本相似度匹配流程图,图源 Langchain-Chatchat
不同于传统数据库的模糊搜索/匹配关键字,我们需要进行语义/特征匹配。
例如:你搜索『猫』,只能得到带 『猫』 关键字匹配的结果,没办法得到 『布偶』、『蓝白』 等结果,传统数据库认为『布偶』是『布偶』、『猫』是『猫』。要实现关联语义搜索,是通过人工打特征标签,这个过程也被称为特征工程(Feature Engineering)。
如何才能将文本自动化的方式来提取这些特征?这就要通过 Vector Embedding 向量化实现,目前社区通过 OpenAI 提供的 text-embedding-ada-002 模型生成,这会引起两个问题:
我们使用了国产文本相似度计算模型 bge-large-zh[10],并私有化部署公司内网,一次 embedding 向量化耗时基本在毫秒级。
提前将官方文档进行 Vector Embeddings,然后存储在向量数据库里,我们这里选择的向量数据库是 Qdrant,主要考虑到是用 Rust 写的,存储和查询也许会快一些!这里引用一个向量数据库选型的几个维度选择:
向量数据库 | URL | GitHub Star | Language | Cloud |
---|---|---|---|---|
chroma | https://github.com/chroma-core/chroma | 8.5K | Python | ❌ |
milvus | https://github.com/milvus-io/milvus | 22.8K | Go/Python/C++ | ✅ |
pinecone | https://www.pinecone.io/ | ❌ | ❌ | ✅ |
qdrant | https://github.com/qdrant/qdrant | 12.7K | Rust | ✅ |
typesense | https://github.com/typesense/typesense | 14.4K | C++ | ❌ |
weaviate | https://github.com/weaviate/weaviate | 7.4K | Go | ✅ |
数据截止到 2023 年 9 月 10 号
原理是通过比较向量之间的距离来判断它们的相似度
那么有了『query 问题的向量』和『数据库里录入的知识库向量』后,这可以直接使用向量数据库提供的 Similarity Search 方式匹配相关内容。
CR Copilot 知识库分为『内置官方文档知识库』、『自定义知识库』,query 输入是先用完整代码截取前半段 + LLM 生成 summary 总结,然后和知识库做相似上下文,匹配流程如下:
截取完整代码前半段作为 query 输入,是因为大部分语言前半段都声明了 modules、packages,通过这种方式提高知识库相似匹配度。
避免大家将官方文档重复录入、embedding,CR Copilot 内置了官方文档,目录包含:
内容 | 数据源 |
---|---|
React 官方文档 | https://react.dev/learn |
TypeScript 官方文档 | https://www.typescriptlang.org/docs/ |
Rspack 官方文档 | https://www.rspack.dev/zh/guide/introduction.html |
Garfish | https://github.com/web-infra-dev/garfish |
公司内 Go / Python / Rust 等编程规范 | ... |
并通过一个简单的 CURD 来管理内置知识库
飞书文档没有格式要求,能看懂正确代码是怎样就行
这里直接使用 LangChain 提供的 LarkSuite[11] 文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter / RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:
chunk_size
: 控制每个块的长度。例如设置为 1024,则每个块包含 1024 个字符。chunk_overlap
: 控制相邻两个块之间的重叠长度。例如设置为 128,则每个块会与相邻块重叠 128 个字符。因为大模型有足够多的数据,我们想让大模型按要求执行就需要用到『Prompt 提示词』。
(图源 Stephen Wolfram)
让 LLM 通过文件代码分析当前代码涉及的知识点,用于后续知识库相似度匹配:
prefix = "user: " if model == "chatglm2" else "<s>Human: "
suffix = "assistant(用中文): let's think step by step." if model == "chatglm2" else "\n</s><s>Assistant(用中文): let's think step by step."
return f"""{prefix}根据这段 {language} 代码,列出关于这段 {language} 代码用到的工具库、模块包。
{language} 代码:
```{language}
{source_code}
请注意:
其中:
language
:当前文件的代码语言(TypeScript、Python、Rust、Golang 等)source_code
:是当前变更文件的完整代码如果使用的模型(如 LLaMA 2)对中文 Prompt 支持较差,需要在设计 Prompt 时采用『输入英文』『输出中文』的方式,即:
# llama2
f"""Human: please briefly review the {language}code changes by learning the provided context to do a brief code review feedback and suggestions. if any bug risk and improvement suggestion are welcome(no more than six)
<context>
{context}
</context>
<code_changes>
{diff_code}
</code_changes>\n</s><s>Assistant: """
# chatglm2
f"""user: 【指令】请根据所提供的上下文信息来简要审查{language} 变更代码,进行简短的代码审查和建议,变更代码有任何 bug 缺陷和改进建议请指出(不超过 6 条)。
【已知信息】:{context}
【变更代码】:{diff_code}
assistant: """
其中:
language
:当前文件的代码语言(TypeScript、Python、Rust、Golang 等)context
:根据知识库返回的上下文信息diff_code
:是变更的代码(不使用完整代码主要是考虑 LLM max_tokens 最大限制)为了能计算出变更代码行,写了一个函数,通过解析 diff 来输出变更的行数:
import re
def parse_diff(input):
if not input:
return []
if not isinstance(input, str) or re.match(r"^\s+$", input):
return []
lines = input.split("\n")
if not lines:
return []
result = []
current_file = None
current_chunk = None
deleted_line_counter = 0
added_line_counter = 0
current_file_changes = None
def normal(line):
nonlocal deleted_line_counter, added_line_counter
current_chunk["changes"].append({
"type": "normal",
"normal": True,
"ln1": deleted_line_counter,
"ln2": added_line_counter,
"content": line
})
deleted_line_counter += 1
added_line_counter += 1
current_file_changes["old_lines"] -= 1
current_file_changes["new_lines"] -= 1
def start(line):
nonlocal current_file, result
current_file = {
"chunks": [],
"deletions": 0,
"additions": 0
}
result.append(current_file)
def to_num_of_lines(number):
return int(number) if number else 1
def chunk(line, match):
nonlocal current_file, current_chunk, deleted_line_counter, added_line_counter, current_file_changes
if not current_file:
start(line)
old_start, old_num_lines, new_start, new_num_lines = match.group(1), match.group(2), match.group(
3), match.group(4)
deleted_line_counter = int(old_start)
added_line_counter = int(new_start)
current_chunk = {
"content": line,
"changes": [],
"old_start": int(old_start),
"old_lines": to_num_of_lines(old_num_lines),
"new_start": int(new_start),
"new_lines": to_num_of_lines(new_num_lines),
}
current_file_changes = {
"old_lines": to_num_of_lines(old_num_lines),
"new_lines": to_num_of_lines(new_num_lines),
}
current_file["chunks"].append(current_chunk)
def delete(line):
nonlocal deleted_line_counter
if not current_chunk:
return
current_chunk["changes"].append({
"type": "del",
"del": True,
"ln": deleted_line_counter,
"content": line
})
deleted_line_counter += 1
current_file["deletions"] += 1
current_file_changes["old_lines"] -= 1
def add(line):
nonlocal added_line_counter
if not current_chunk:
return
current_chunk["changes"].append({
"type": "add",
"add": True,
"ln": added_line_counter,
"content": line
})
added_line_counter += 1
current_file["additions"] += 1
current_file_changes["new_lines"] -= 1
def eof(line):
if not current_chunk:
return
most_recent_change = current_chunk["changes"][-1]
current_chunk["changes"].append({
"type": most_recent_change["type"],
most_recent_change["type"]: True,
"ln1": most_recent_change["ln1"],
"ln2": most_recent_change["ln2"],
"ln": most_recent_change["ln"],
"content": line
})
header_patterns = [
(re.compile(r"^@@\s+-(\d+),?(\d+)?\s++(\d+),?(\d+)?\s@@"), chunk)
]
content_patterns = [
(re.compile(r"^\ No newline at end of file$"), eof),
(re.compile(r"^-"), delete),
(re.compile(r"^+"), add),
(re.compile(r"^\s+"), normal)
]
def parse_content_line(line):
nonlocal current_file_changes
for pattern, handler in content_patterns:
match = re.search(pattern, line)
if match:
handler(line)
break
if current_file_changes["old_lines"] == 0 and current_file_changes["new_lines"] == 0:
current_file_changes = None
def parse_header_line(line):
for pattern, handler in header_patterns:
match = re.search(pattern, line)
if match:
handler(line, match)
break
def parse_line(line):
if current_file_changes:
parse_content_line(line)
else:
parse_header_line(line)
for line in lines:
parse_line(line)
return result
这里机器人账号调用 Gitlab API 进行的评论,会默认被 Resolved,这样可以避免 CR Copilot 评论过多造成每个评论要手动点下 Resolved
一切皆概率:基于 LLM 的应用最大特点在于『输出不确定性』,在候选词中选概率最高的进行输出,即使像 1+1=? 这样看起来有确定性输出的,LLM 也是基于概率给出的!
开源 LLMs + 领域知识库 + 私有化部署是企业级应用的一种实践方式: :
这里 LLMs 指多个大模型组合使用;大模型再强大也必须结合内部的知识库才能发挥作用;
私有化部署好处是打消各行各业对数据安全的担忧!
大模型在 Chat 聊天的产品形态更多是秀肌肉 ,让各行各业能被触达到;最终的产品形态需要具体场景具体分析!
AI+ 刚刚开始:CR Copilot 只是达人 LLMs + 研发工程化其中一个应用场景,还有一些应用/工具等达人团队打磨好后再和大家一起分享!
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8