每个程序员都应该了解的硬件知识

500次阅读  |  发布于8月以前

在追求高效代码的路上,我们不可避免地会遇到代码的性能瓶颈。为了了解、解释一段代码为什么低效,并尝试改进低效的代码,我们总是要了解硬件的工作原理。于是,我们可能会尝试搜索有关某个架构的介绍、一些优化指南或者阅读一些计算机科学的教科书(如:计算机组成原理)。但以上的内容可能都太过繁琐、细节太多,在阅读的过程中,我们可能会迷失在纷繁的细节中,没法很好地将知识运用到实践中。

本文旨在通过多个可运行的 benchmark 介绍常见的优化细节以及与之相关的硬件知识,为读者建立一个简单、有效的硬件心智模型。

Cache

首先要介绍的就是缓存 cache 。我们先来看一个引自 CSAPP 的经典例子:

pub fn row_major_traversal(arr: &mut Vec<Vec<usize>>) {
    let n = arr.len();
    for i in 0..n {
        assert!(arr[i].len() == n);
        for j in 0..n {
            arr[i][j] += j;
        }
    }
}

pub fn column_major_traversal(arr: &mut Vec<Vec<usize>>) {
    let n = arr.len();
    for i in 0..n {
        assert!(arr[i].len() == n);
        for j in 0..n {
            arr[j][i] += j;
        }
    }
}

在上面两个例子中,分别按行、按列迭代同样大小的二维数组。

我们对这两个函数进行 benchmark

在上图中,纵轴是平均耗时,横轴是数组大小(如:2000.0 表示数组大小为:2000 x 2000)。我们看到按行迭代数组比按列迭代的效率高约 10 倍。

在现代的存储架构中,cpu 和主存之间是 cachecpu 中的寄存器、高速缓存、内存三者的数据读写速度越来越慢。

而当 cpu 读取一个数据的时候,会先尝试从 cache 中读取。如果发生 cache miss 的时候,才会将数据从主存中加载到 cache 中再读取。而值得注意的是,cpu 每一次的读取都是以 cache line 为单位的。也就是说,cpu 在读取一个数据的时候,也会将该数据相邻的、一个 cache line 内的数据也加载到 cache 中。而二维数组在内存中是按行排布的,换句话说,数组中相邻的两行是首尾相连排列的。所以在读取 arr[i] 的时候,arr[i + 1]arr[i + 2] 等相邻的数组元素也会被加载到 cache 中,而当下一次迭代中,需要读取数组元素 arr[i + 1] 时,就能直接从 cache 中取出,速度非常快。而因为以列读取数组时,arr[i][j]arr[i + 1][j] 在内存中的位置就不再是紧密相连,而是相距一个数组行大小。这也导致了在读取 arr[i][j] 时,arr[i + 1][j] 并没有被加载到 cache 中。在下一次迭代时就会发生 cache miss 也就导致读取速度大幅下降。

prefetcher

如果我们不再是按某种顺序,而是随机地遍历数组,结果又会如何呢?

pub fn row_major_traversal(arr: &mut Vec<Vec<usize>>) {
    let n = arr.len();
    for i in 0..n {
        assert!(arr[i].len() == n);
        let ri: usize = rand::random();
        std::intrinsics::black_box(ri);
        for j in 0..n {
            arr[i][j] += j;
        }
    }
}

pub fn column_major_traversal(arr: &mut Vec<Vec<usize>>) {
    let n = arr.len();
    for i in 0..n {
        assert!(arr[i].len() == n);
        let ri: usize = rand::random();
        std::intrinsics::black_box(ri);
        for j in 0..n {
            arr[j][i] += j;
        }
    }
}

pub fn random_access(arr: &mut Vec<Vec<usize>>) {
    let n = arr.len();
    for i in 0..n {
        assert!(arr[i].len() == n);
        for j in 0..n {
            let ri: usize = rand::random();
            arr[j][ri % n] += j;
        }
    }
}

理论上来说,随机遍历和按列遍历都会导致频繁地 cache miss ,所以两者的效率应该是相近的。接下来,我们进行 benchmark

可以看到,random_accesscolumn_major 的效率还要低了 2 倍。原因是,在 cachecpu 间还有 prefetcher

我们可以参考维基百科上的资料:

Cache prefetching can be accomplished either by hardware or by software.

random_access 会让 prefetching 的机制失效,使得运行效率进一步下降。

cache associativity

如果我们按照不同的步长迭代一个数组会怎么样呢?

pub fn iter_with_step(arr: &mut Vec<usize>, step: usize) {
    let n = arr.len();
    let mut i = 0;
    for _ in 0..1000000 {
        unsafe { arr.get_unchecked_mut(i).add_assign(1); }
        i = (i + step) % n;
    }
}

steps 为:

let steps = [
    1, 
    2, 
    4, 
    7, 8, 9,
    15, 16, 17,
    31, 32, 33,
    61, 64, 67,
    125, 128, 131,
    253, 256, 259, 
    509, 512, 515, 
    1019, 1024, 1031
];

我们进行测试:

可以看见当 step 为 2 的幂次时,都会有一个运行时间的突起,一个性能的毛刺。这是为什么呢?要回答这个问题,我们需要温习一些计组知识。

cache 的大小是要远小于主存的。这就意味着我们需要通过某种方式将主存的不同位置映射到缓存中。一般来说,共有 3 种不同的映射方式。

全相联映射

全相联映射允许主存中的行可以映射到缓存中的任意一行。这种映射方式灵活性很高,但会使得缓存的查找速度下降。

直接映射

直接映射则规定主存中的某一行只能映射到缓存中的特定行。这种映射方式查找速度高,但灵活性很低,会经常导致缓存冲突,从而导致频繁 cache miss

组相联映射

组相联映射则尝试吸收前两者的优点,将缓存中的缓存行分组,主存中某一行只能映射到特定的一组,在组内则采取全相联的映射方式。如果一组之内有 n 个缓存行,我们就称这种映射方式为 n 路组相联(n-way set associative)。

回到真实的 cpu 中,如:AMD Ryzen 7 4700u

我们可以看到,L1 cache 大小为 4 x 32 KB (128KB) ,采取 8 路组相联,缓存行大小为 64 bytes 。也就是说,该缓存共有 4x32x1024 byte/64 byte = 2048 行,共分为 2048/8 = 256 组。也就是说,当迭代数组的步长为 时,数据更可能会被分到同一个组内,导致 cache miss 更加频繁,从而导致效率下降。

(注:我的 cpuintel i7-10750H ,算得的 L1 cache 的组数为 384 ,并不能很好地用理论解释。)

false share

我们再来观察一组 benchmark

use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

fn increase(v: &AtomicUsize) {
    for _ in 0..10000 {
        v.fetch_add(1, Ordering::Relaxed);
    }
}

pub fn share() {
    let v = AtomicUsize::new(0);
    thread::scope(|s| {
        let ta = s.spawn(|| increase(&v));
        let tb = s.spawn(|| increase(&v));
        let tc = s.spawn(|| increase(&v));
        let td = s.spawn(|| increase(&v));

        ta.join().unwrap();
        tb.join().unwrap();
        tc.join().unwrap();
        td.join().unwrap();
    });
}

pub fn false_share() {
    let a = AtomicUsize::new(0);
    let b = AtomicUsize::new(0);
    let c = AtomicUsize::new(0);
    let d = AtomicUsize::new(0);

    thread::scope(|s| {
        let ta = s.spawn(|| increase(&a));
        let tb = s.spawn(|| increase(&b));
        let tc = s.spawn(|| increase(&c));
        let td = s.spawn(|| increase(&d));

        ta.join().unwrap();
        tb.join().unwrap();
        tc.join().unwrap();
        td.join().unwrap();
    });
}

share 函数中,四个线程同时竞争原子变量 v 。而在 false_share 函数中,四个线程分别操作不同的原子变量,理论上线程之间不会产生数据竞争,所以 false_share 的执行效率应该比 share 要高。但 benchmark 的结果却出乎意料:

可以看到 false_shareshare 的执行效率还要低。

在前文中提到,cpu 在读取数据时,是以一个 cache line 大小为单位将数据从主存中加载到 cache 中的。在前文中提到,笔者机器的 cache line 大小为:64 bytes 。而 false_share 函数中,四个原子变量在栈中的排布可能是:

a, b, c, d 四个原子变量在同一个 cache line 中,也就是说实际上四个线程实际上还是发生了竞争,产生了 false share 的现象。

那要如何解决这个问题呢?我们可以采用 #[repr(align(64))] (在不同的编程语言中又不同的写法),告知编译器将原子变量的内存地址以一个 cache line 大小对齐,从而避免四个原子变量位于同一个 cache line 中。

fn increase_2(v: &AlignAtomicUsize) {
    for _ in 0..10000 {
        v.v.fetch_add(1, Ordering::Relaxed);
    }
}

#[repr(align(64))]
struct AlignAtomicUsize {
    v: AtomicUsize,
}

impl AlignAtomicUsize {
    pub fn new(val: usize) -> Self {
        Self { v: AtomicUsize::new(val) }
    }
}

pub fn non_share() {
    let a = AlignAtomicUsize::new(0);
    let b = AlignAtomicUsize::new(0);
    let c = AlignAtomicUsize::new(0);
    let d = AlignAtomicUsize::new(0);

    thread::scope(|s| {
        let ta = s.spawn(|| increase_2(&a));
        let tb = s.spawn(|| increase_2(&b));
        let tc = s.spawn(|| increase_2(&c));
        let td = s.spawn(|| increase_2(&d));

        ta.join().unwrap();
        tb.join().unwrap();
        tc.join().unwrap();
        td.join().unwrap();
    });
}

我们再次进行 benchmark,这一次 benchmark 的结果就符合我们的预测了:

可以看见 non_share 相比前两者,提升了近乎两倍的效率。

pipeline

我们再看一个 benchmark

pub trait Get {
    fn get(&self) -> i32;
}

struct Foo { /* ... */ }
struct Bar { /* ... */ }

impl Get for Foo { /* ... */ }
impl Get for Bar { /* ... */ }

let mut arr: Vec<Box<dyn Get>> = vec![];
for _ in 0..10000 {
    arr.push(Box::new(Foo::new()));
}
for _ in 0..10000 {
    arr.push(Box::new(Bar::new()));
}

// 此时数组中元素的排列时有序的
arr.iter().filter(|v| v.get() > 0).count()

// 将数组打乱
arr.shuffle(&mut rand::thread_rng());

// 再次测试
arr.iter().filter(|v| v.get() > 0).count()

测试结果为:

可以看见,sortedunsorted 之间效率差约 2.67 倍。这是因为频繁的分支预测失败导致的。

CPU 中,每一条指令的执行都会分为多个步骤,而现代计算机架构中存在一个结构 pipeline 可以同时执行处于不同执行阶段的指令。

pipeline 要高效地工作,需要在执行指令 A 时就将接下来要执行的指令 B, C, D 等提前读入。在一般的代码中,pipeline 可以有效地工作,但遇到分支的时候,我们就遇到难题了:

如图,pipeline 应该读入 Code A 还是 Code B 呢?在执行分支语句前,谁也不知道,CPU 也是。如果我们还想要 pipeline 高效工作的话,我们就只剩下一条路:猜。只要猜得足够准,我们的效率就能够接近没有分支的情况。“猜”这一步也有一个专业名词——**流水线冒险**。而现代计算机在编译器配合以及一些算法的帮助下,某些分支(如下图所示)的预测成功率可以高达 99% 。

分支预测失败的代价是要付出代价的。首先,我们要清除 pipeline 中的指令,因为它们不是接下来要执行的指令。其次,我们要将接下来要执行的指令一一加载进 pipeline 。最后,指令经过多个步骤被执行。

在测试代码中,我们打乱数组后,就会导致分支预测频繁失败,最终导致了执行效率的下降。

数据依赖

我们再来看一段代码:

pub fn dependent(a: &mut Vec<i32>, b: &mut Vec<i32>, c: &Vec<i32>) {
    assert!(a.len() == 100000);
    assert!(b.len() == 100000);
    assert!(c.len() == 100000);

    for i in 0..=99998 {
        a[i] += b[i];
        b[i + 1] += c[i];
    }
    a[9999] += b[9999];
}

pub fn independent(a: &mut Vec<i32>, b: &mut Vec<i32>, c: &Vec<i32>) {
    assert!(a.len() == 100000);
    assert!(b.len() == 100000);
    assert!(c.len() == 100000);

    a[0] += b[0];
    for i in 0..=99998 {
        b[i + 1] += c[i];
        a[i + 1] += b[i + 1];
    }
}

在这段代码中,我们通过两种不同的方式迭代数组,并最终达成一致的效果。我们画出,数据流图如下图:

在上图中,我们用箭头表示依赖关系(a[0] -> b[0] 表示 a[0] 的结果依赖于 b[0] ),用黑色箭头表示在循环外进行的操作,用不同的颜色,表示不同迭代中的操作。我们可以看到,在 dependent 中,不同颜色的箭头会出现在同一个数据流中,如:(a[1]->b[1]->c[0] 中就出现了红色和蓝色箭头),这就意味着第 n + 1 次迭代会依赖于第 n 次迭代的结果,而 independent 中则没有这种情况。

这会产生什么影响呢?我们来进行测试:

可以看到,出现了近 3 倍的效率差距。这有两方面原因。

一是数据依赖会导致 pipeline 效率以及 cpu 指令级并行的效率变低。

二是这种迭代之间的依赖会阻止编译器的向量化优化。我们观察等价的 cpp 代码(rust 1.71 的优化能力并不足以将 independet 向量化,我略感悲伤)。

#include <vector>

using i32 = int;

template<typename T>
using Vec = std::vector<T>;

void dependent(Vec<i32> &a, Vec<i32> &b, Vec<i32> &c) {
    for (int i = 0; i < 9999; i++) {
        a[i] += b[i];
        b[i + 1] += c[i];
    }
    a[9999] += b[9999];
}

void independent(Vec<i32> &a, Vec<i32> &b, Vec<i32> &c) {
    a[0] += b[0];
    for (int i = 0; i < 9999; i++) {
        b[i + 1] += c[i];
        a[i + 1] += b[i + 1];
    }
}

查看汇编:

dependent(...):
    mov     rax, rdx
    mov     rdx, QWORD PTR [rsi]
    mov     rcx, QWORD PTR [rdi]
    mov     rdi, QWORD PTR [rax]
    xor     eax, eax
.L2:
    mov     esi, DWORD PTR [rdx+rax]
    add     DWORD PTR [rcx+rax], esi
    mov     esi, DWORD PTR [rdi+rax]
    add     DWORD PTR [rdx+4+rax], esi
    add     rax, 4
    cmp     rax, 39996
    jne     .L2
    mov     eax, DWORD PTR [rdx+39996]
    add     DWORD PTR [rcx+39996], eax
    ret

independent(...):
    mov     rax, QWORD PTR [rdi]
    mov     rcx, rdx
    mov     rdx, QWORD PTR [rsi]
    lea     rdi, [rax+4]
    mov     esi, DWORD PTR [rdx]
    add     DWORD PTR [rax], esi
    lea     r8, [rdx+4]
    mov     rsi, QWORD PTR [rcx]
    lea     rcx, [rdx+20]
    cmp     rdi, rcx
    lea     rdi, [rax+20]
    setnb   cl
    cmp     r8, rdi
    setnb   dil
    or      ecx, edi
    mov     rdi, rdx
    sub     rdi, rsi
    cmp     rdi, 8
    seta    dil
    test    cl, dil
    je      .L9
    mov     rcx, rax
    sub     rcx, rsi
    cmp     rcx, 8
    jbe     .L9
    mov     ecx, 4
.L7:
    movdqu  xmm0, XMMWORD PTR [rsi-4+rcx]
    movdqu  xmm2, XMMWORD PTR [rdx+rcx]
    paddd   xmm0, xmm2
    movups  XMMWORD PTR [rdx+rcx], xmm0
    movdqu  xmm3, XMMWORD PTR [rax+rcx]
    paddd   xmm0, xmm3
    movups  XMMWORD PTR [rax+rcx], xmm0
    add     rcx, 16
    cmp     rcx, 39988
    jne     .L7
    movq    xmm0, QWORD PTR [rsi+39984]
    movq    xmm1, QWORD PTR [rdx+39988]
    paddd   xmm0, xmm1
    movq    QWORD PTR [rdx+39988], xmm0
    movq    xmm1, QWORD PTR [rax+39988]
    paddd   xmm1, xmm0
    movq    QWORD PTR [rax+39988], xmm1
    mov     ecx, DWORD PTR [rdx+39996]
    add     ecx, DWORD PTR [rsi+39992]
    mov     DWORD PTR [rdx+39996], ecx
    add     DWORD PTR [rax+39996], ecx
    ret
.L9:
    mov     ecx, 4
.L6:
    mov     edi, DWORD PTR [rdx+rcx]
    add     edi, DWORD PTR [rsi-4+rcx]
    mov     DWORD PTR [rdx+rcx], edi
    add     DWORD PTR [rax+rcx], edi
    add     rcx, 4
    cmp     rcx, 40000
    jne     .L6
    retAI助手

可以看到,independent 函数被成功向量化。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8