引子:我接触过很多编程语言,接触过各种各样的服务器端开发,Java,Go,Ruby,Javascript等语言,Spring,Node.js,Rails
等等常见服务器端框架和编程模型都有接触。这里谈一下我个人对高性能服务器端程序的一些看法,希望给各位读者一些认识。
此外,阅读这篇文章,有如下几个前提:不谈硬件,不评论编程语言以及框架的好坏,不谈高级算法,可拍砖,拒绝喷子
三个关键词
Cache,Asynchronous,Concurrent
我们一个一个来讲。
Cache 翻译成中文就是缓存,台湾的叫法叫做快取,其本质是将获取缓慢或者计算缓慢的数据结果暂时存储起来,以便以后再次获取或者计算同样的数据可以直接从存储中取得结果,从而可能提升性能的一种手段。Cache 最早是应用在计算机的 CPU 中,这篇文章不谈硬件,所以有需要了解 CPU 的缓存的同学可自行搜索。
可以想象,如果让一个人一遍一遍的从 1+2+3+4+…+99+100=? 这样去算,他加到最后发现等于5050,而这个过程耗费了他大量的时间,耗费了大量的脑力,在此期间,他可能把所有精力都放在这个计算上面而无暇顾及其他事情。等到他累得满头大汗,加完了结果,他告诉你是 5050。没过多久,你又让他做同样的事情,我相信这家伙会不加思索的再次告诉你 5050。为什么?你会笑我说,人又不是傻子,这为同学肯定记得这个结果是5050啊。
可是,计算机不一样,计算机就是你上面要嘲笑的那个傻子,他傻到,完全不会记得刚在做了什么事情,他会傻乎乎的再重新算一遍告诉你结果。没错如果你问他一万遍,这头没有脑子的机器会算一万遍的。虽然上面这个从1加到100这个例子对于一款现代化的计算机来讲简直是小菜一碟,但是计算机往往面临的计算难题是我们人类所无法企及的。
Cache 就是为了来解决这个事情的,因为事情往往是这样的:你会发现一些非常复杂的过程的计算结果是可重用的,而且把这个结果暂时存储在某些地方,查找起来也是极为方便的。
所以,现在你理解了缓存,那可以来思考一些缓存的设计策略了。这里做一点说明,不同的缓存策略跟具体的业务系统关系非常大,制定缓存策略需要根据具体的情况来分析。常用的策略:
还拿上面的例子来说,1加到100,你可以构建出是个缓存分别是1加到10,10加到20,20加到30 … 一直到 90加到100 这9个缓存。好处是你如果被请求到 1加到60 的时候,仍然可以使用这些缓存结果。可坏处也很明显,你取到几个缓存的结果后不得不再进行一次运算。所以实际情况,往往是在最终结果和中间结果之间找到平衡点,或者是两者配合使用。
不知不觉中,你有没有发现,1+2+3+4+…+99+100=5050 是个永远都成立的事实,这也就意味着,它永远不用被清除。可事实是往往是,缓存是有有效期的,例如需要缓存今天的天气情况,今天是 2014年11月16日,到了明天就是 11月17日,天气就不一样了。再例如需要缓存 Coding 的最新冒泡列表,当有人发布了新的冒泡,那么这个列表就得被更新。从这个角度来看,缓存的策略又有如下常见的几种:
嗯,既然提到了缓存的更新或者清除,那么就牵扯到缓存的更新策略。例子永远好过大段的理论:假如我们要缓存 Coding 的冒泡列表。有这么一种策略:当用户请求时我们检查下是否已存在这样的缓存,如果有直接返回缓存数据,否则我们生成这个列表(计算机的计算过程),返回给用户并且把冒泡列表(计算结果)存储起来,以便以后的用户访问时直接获取。当用户发布了一个新的冒泡的时候,我们清除这个缓存,再有用户请求时将重复以上过程。这是其中一种完整的缓存清除策略。另外一种是,每当我们收到一个用户发布的冒泡时,都重新构建这个缓存,用户每次查看冒泡列表都是取的缓存数据。这两种缓存分别称之为:
关于 Cache 还有很多很多需要注意和设计上的思路和策略,这里不再一一赘述。这些缓存在不同的维度有不同的策略,我们需要根据具体的业务情况来选择合适的策略。Coding 的很多业务中使用了上述很多种策略,例如我们常见的分支列表和标签列表就是使用触发式失效缓存,我们的广场项目列表就是使用主动式缓存构建。
Asynchronous 的意思是异步。什么是异步呢?就是不在第一时间告知调用者结果,告诉他我已经收到这个任务了,我会处理,处理完毕后通知你结果,如果你不是等不到结果就无法进行下去的话,你完全可以先干别的事情。
嗯,好像我描述的比较拉杂。还是例子:你去咖啡厅点一杯咖啡,服务员告诉你现磨咖啡需要15分钟才可做好,那么在咖啡做好之前,你不可能盯着服务员或者咖啡师15分钟,你肯定会干点别的,比如说玩手机上一下网,或者跟你女朋友商量下去看电影什么的,总之你不会傻乎乎等着的。等到咖啡做好了,服务员会记得给你端过来的。这就是异步过程,你的大脑不必为一个漫长的过程卡住,可以继续其他的事情。
服务端程序设计往往也是这样,在你等待一个很缓慢的过程的时候,如果你不是必须要得到这个过程的结果才能继续下去,你完全可以先进行别的过程,等到那个缓慢的过程执行完毕后,它会通知你结果的。
异步已经在现在的各种编程领域有了很广泛的应用,例如 Ajax 技术,就是一种异步的手段,在浏览器和服务器交互的时候,完全不影响你在网页上的其他操作。
异步在各种编程语言和框架中都有相应的支持,这里简单介绍一下 Javascript 的异步支持。熟悉它的人的人请无视这段。它使用回调的方式支持异步,大致意思是,A 交代给 B 一个任务,并且告知 B 任务完成后继续执行哪段程序(往往包装成一个匿名function),B执行完任务后,执行这个匿名的 function,这样来完成异步过程。在 Javascript 中大量的使用这种回调的异步方案,已经不再局限于对一个缓慢的过程了,可以对几乎所有的过程都采用异步处理。
在服务端程序中,除了使用线程,协程,回调之外,另外一种常见的异步的支持方式就是消息队列。其原理是,生产者发送消息到消息队列中,消费者从中取出消息,做出相应处理,并把结果存储起来或者通过某种方式告知生产者。
异步在很多时候可以运用现代化计算机 CPU 的多核特性和分布式计算特性,能显著的提升应用的性能,但是一个前提就是,异步的任务的结果必须是主进程进行下一步操作所不依赖的,否则主进程必须等待,直到这个任务执行结束,拿到结果再进行下一步,这时就变成了传统的同步计算了。
异步操作在 Coding 中也有非常广泛的应用。例如当用户执行完一次 Push,Coding 需要生成一条 Push 的动态,需要清理掉相应的缓存,需要触发相关的 WebHook 等等,这些操作都是通过消息队列来异步完成的。因为这些操作非常的耗时,而且完全不需要即时完成,所以用户在 Push 的时候等待着这些操作完成是很不合理的。异步操作在这里即展示出了其应用多核和多台服务器的优势,在某种程度上还能提升用户体验。
Golang 是 Google 2009 年发布的一门现代化语言,其语言特性对异步提供了良好的支持。这里举个例子体现一下异步的魅力:
//一个查询结构体
type project struct {
//参数Channel
name chan string
result chan string
}
//addProject
func addProject(u user, p project) {
//检查用户权限
checkPermission(u)
//启动协程
go func() {
//获取输入
name := <-p.name
//访问数据库,输出结果通道
q.result <- "add project :" + name
}()
}
//主进程
func main() {
//初始化project
p := project{ make(chan string, 1), make(chan string, 1) }
//某位用户
u := user{}
//执行addProject,注意执行的时候还不需要告知要创建的项目名字
addProject(u,p)
//准备参数
p.name <- "an-asynchronous-project"
//获取结果
fmt.Println(<-p.result)
}
这一段程序涉及到了 Golang 的 goroutine 和 channel,不了解的可以去查一下相关资料。
这段程序实现了在还为准备好参数时就已经调用一个 function 。当我们调用 addProject 的时候还不知道项目的名字,但是这完全不影响我们去检查用户权限。程序完全可以一边去检查权限,一边去获取项目名字,当程序执行到不得不拿到项目的名字才能继续的时候,它将阻塞,直到我们告诉他项目名字。
Concurrent 的意思是并行。现代化的 CPU 往往具有多个核心,而且有些 CPU 也具有超线程能力。如果我们可以将单个过程拆分成小的任务,交给 CPU 的多个核心,或者是分布式计算系统的多个计算节点,就可以充分利用并行计算来提升性能。前提是这些任务相互之间不要有相互依赖的关系。依然是例子:需要计算网站上某一批用户的活跃度积分,传统的,我们会查出这一批用户,然后写一个循环,然后轮流计算他们的积分,最后得到结果。其实每个用户的积分的计算都是独立的,相互不依赖,那么我们就可以利用这一点来并行化这个计算。
下面给出一段 Coding 代码托管中的程序,这段程序是指定条件获取一个提交列表,使用了并行计算的一种 并发循环:
public List<Commit> getCommits(String objectId, String path, int offset, int maxCount) {
List<String> shas = getCommitsSha(this, objectId, path, offset, maxCount);
List<Commit> commits = new ArrayList<>();
if (shas != null) {
List<GetCommit> getCommits = new ArrayList<>();
for (String sha : shas) {
getCommits.add(new GetCommit(this, sha));
}
//声明一个自适应的线程池
ExecutorService executor = Executors.newFixedThreadPool(8);
List<Future<Commit>> futureList = null;
//并发的调用getCommit
futureList = executor.invokeAll(getCommits);
executor.shutdown();
for (Future<Commit> future : futureList) {
Commit commit = future.get();
commits.add(commit);
}
}
return commits;
}
//Java 是一个啰嗦的语言,还要声明一个类来包装一下这个过程。
class GetCommit implements Callable<Commit> {
private Repo repo;
private String sha;
public GetCommit(Repo repo, String sha) {
this.repo = repo;
this.sha = sha;
}
@Override
public Commit call() throws Exception {
return repo.getCommit(sha);
}
}
这段程序是一个并发循环的例子,例子中需要根据一些参数查询到 Commit 的列表,而 repo.getCommit 这个过程完全不需要一个一个轮流查询,因为他们是完全独立的,所以可以使用 Java 的 Cocurrent 包来做并发循环,充分利用多核来尽快得到执行结果。
关于高性能服务器程序需要关注的点还有很多,这里只是简单的介绍了下三个利器(Cache,Asynchronous,Concurrent)。而即便是这三个利器,我的介绍也只是冰山一角,但是请相信你看懂了我介绍的这些东西,重新去思考服务端编程会获得不少收获的。
这三者也是相辅相成的关系,很多时候都是配合着使用才能起到很好的效果。异步和并行在某种程度上是有重叠的,而我们经常使用异步的方式去主动构建缓存。
最后再给一些小提示:
本文出自 Coding 官方技术博客:
作者: Coding 架构师 王振威
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8