最大K个数问题的Python版解法总结

1081次阅读  |  发布于5年以前

TopK问题,即寻找最大的K个数,这个问题非常常见,比如从1千万搜索记录中找出最热门的10个关键词.
方法一:
先排序,然后截取前k个数.
时间复杂度:O(nlogn)+O(k)=O(nlogn)。
这种方式比较简单粗暴,提一下便是。

方法二:最大堆

我们可以创建一个大小为K的数据容器来存储最小的K个数,然后遍历整个数组,将每个数字和容器中的最大数进行比较,如果这个数大于容器中的最大值,则继续遍历,否则用这个数字替换掉容器中的最大值。这个方法的理解也十分简单,至于容器的选择,很多人第一反应便是最大堆,但是python中最大堆如何实现呢?我们可以借助实现了最小堆的heapq库,因为在一个数组中,每个数取反,则最大数变成了最小数,整个数字的顺序发生了变化,所以可以给数组的每个数字取反,然后借助最小堆,最后返回结果的时候再取反就可以了,代码如下:


    import heapq
    def get_least_numbers_big_data(self, alist, k):
      max_heap = []
      length = len(alist)
      if not alist or k <= 0 or k > length:
        return
      k = k - 1
      for ele in alist:
        ele = -ele
        if len(max_heap) <= k:
          heapq.heappush(max_heap, ele)
        else:
          heapq.heappushpop(max_heap, ele)

      return map(lambda x:-x, max_heap)


    if __name__ == "__main__":
      l = [1, 9, 2, 4, 7, 6, 3]
      min_k = get_least_numbers_big_data(l, 3)

方法三:quick select

quick select算法.其实就类似于快排.不同地方在于quick select每趟只需要往一个方向走.
时间复杂度:O(n).


    def qselect(A,k): 
      if len(A)<k:return A 
      pivot = A[-1] 
      right = [pivot] + [x for x in A[:-1] if x>=pivot] 
      rlen = len(right) 
      if rlen==k: 
        return right 
      if rlen>k: 
        return qselect(right, k) 
      else: 
        left = [x for x in A[:-1] if x<pivot] 
        return qselect(left, k-rlen) + right 

    for i in range(1, 10): 
      print qselect([11,8,4,1,5,2,7,9], i) 

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8