Python使用multiprocessing实现一个最简单的分布式作业调度系统

297次阅读  |  发布于5年以前

mutilprocess像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。

介绍

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信。

想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统。

实现

Job

首先创建一个Job类,为了测试简单,只包含一个job id属性

job.py


    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    class Job:
    def __init__(self, job_id):
    self.job_id = job_id

Master

Master用来派发作业和显示运行完成的作业信息

master.py


    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    from Queue import Queue
    from multiprocessing.managers import BaseManager
    from job import Job

class Master:


    def __init__(self):
    # 派发出去的作业队列
    self.dispatched_job_queue = Queue()
    # 完成的作业队列
    self.finished_job_queue = Queue()
    def get_dispatched_job_queue(self):
    return self.dispatched_job_queue
    def get_finished_job_queue(self):
    return self.finished_job_queue
    def start(self):
    # 把派发作业队列和完成作业队列注册到网络上
    BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue)
    BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue)
    # 监听端口和启动服务
    manager = BaseManager(address=('0.0.0.0', 8888), authkey='jobs')
    manager.start()
    # 使用上面注册的方法获取队列
    dispatched_jobs = manager.get_dispatched_job_queue()
    finished_jobs = manager.get_finished_job_queue()
    # 这里一次派发10个作业,等到10个作业都运行完后,继续再派发10个作业
    job_id = 0
    while True:
    for i in range(0, 10):
    job_id = job_id + 1
    job = Job(job_id)
    print('Dispatch job: %s' % job.job_id)
    dispatched_jobs.put(job)
    while not dispatched_jobs.empty():
    job = finished_jobs.get(60)
    print('Finished Job: %s' % job.job_id)
    manager.shutdown()
    if __name__ == "__main__":
    master = Master()
    master.start()

Slave

Slave用来运行master派发的作业并将结果返回

slave.py


    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    import time
    from Queue import Queue
    from multiprocessing.managers import BaseManager
    from job import Job

class Slave:


    def __init__(self):
    # 派发出去的作业队列
    self.dispatched_job_queue = Queue()
    # 完成的作业队列
    self.finished_job_queue = Queue()

def start(self):


    # 把派发作业队列和完成作业队列注册到网络上
    BaseManager.register('get_dispatched_job_queue')
    BaseManager.register('get_finished_job_queue')
    # 连接master
    server = '127.0.0.1'
    print('Connect to server %s...' % server)
    manager = BaseManager(address=(server, 8888), authkey='jobs')
    manager.connect()
    # 使用上面注册的方法获取队列
    dispatched_jobs = manager.get_dispatched_job_queue()
    finished_jobs = manager.get_finished_job_queue()
    # 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业
    while True:
    job = dispatched_jobs.get(timeout=1)
    print('Run job: %s ' % job.job_id)
    time.sleep(1)
    finished_jobs.put(job)
    if __name__ == "__main__":
    slave = Slave()
    slave.start()

测试

分别打开三个linux终端,第一个终端运行master,第二个和第三个终端用了运行slave,运行结果如下

master


    $ python master.py 
    Dispatch job: 1
    Dispatch job: 2
    Dispatch job: 3
    Dispatch job: 4
    Dispatch job: 5
    Dispatch job: 6
    Dispatch job: 7
    Dispatch job: 8
    Dispatch job: 9
    Dispatch job: 10
    Finished Job: 1
    Finished Job: 2
    Finished Job: 3
    Finished Job: 4
    Finished Job: 5
    Finished Job: 6
    Finished Job: 7
    Finished Job: 8
    Finished Job: 9
    Dispatch job: 11
    Dispatch job: 12
    Dispatch job: 13
    Dispatch job: 14
    Dispatch job: 15
    Dispatch job: 16
    Dispatch job: 17
    Dispatch job: 18
    Dispatch job: 19
    Dispatch job: 20
    Finished Job: 10
    Finished Job: 11
    Finished Job: 12
    Finished Job: 13
    Finished Job: 14
    Finished Job: 15
    Finished Job: 16
    Finished Job: 17
    Finished Job: 18
    Dispatch job: 21
    Dispatch job: 22
    Dispatch job: 23
    Dispatch job: 24
    Dispatch job: 25
    Dispatch job: 26
    Dispatch job: 27
    Dispatch job: 28
    Dispatch job: 29
    Dispatch job: 30

slave1


    $ python slave.py 
    Connect to server 127.0.0.1...
    Run job: 1 
    Run job: 2 
    Run job: 3 
    Run job: 5 
    Run job: 7 
    Run job: 9 
    Run job: 11 
    Run job: 13 
    Run job: 15 
    Run job: 17 
    Run job: 19 
    Run job: 21 
    Run job: 23 

slave2


    $ python slave.py 
    Connect to server 127.0.0.1...
    Run job: 4 
    Run job: 6 
    Run job: 8 
    Run job: 10 
    Run job: 12 
    Run job: 14 
    Run job: 16 
    Run job: 18 
    Run job: 20 
    Run job: 22 
    Run job: 24 

以上内容是小编给大家介绍的Python使用multiprocessing实现一个最简单的分布式作业调度系统,希望对大家有所帮助!

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8