基于ID3决策树算法的实现(Python版)

830次阅读  |  发布于5年以前

实例如下:


    # -*- coding:utf-8 -*-

    from numpy import *
    import numpy as np
    import pandas as pd
    from math import log
    import operator

    #计算数据集的香农熵
    def calcShannonEnt(dataSet):
      numEntries=len(dataSet)
      labelCounts={}
      #给所有可能分类创建字典
      for featVec in dataSet:
        currentLabel=featVec[-1]
        if currentLabel not in labelCounts.keys():
          labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
      shannonEnt=0.0
      #以2为底数计算香农熵
      for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
      return shannonEnt


    #对离散变量划分数据集,取出该特征取值为value的所有样本
    def splitDataSet(dataSet,axis,value):
      retDataSet=[]
      for featVec in dataSet:
        if featVec[axis]==value:
          reducedFeatVec=featVec[:axis]
          reducedFeatVec.extend(featVec[axis+1:])
          retDataSet.append(reducedFeatVec)
      return retDataSet

    #对连续变量划分数据集,direction规定划分的方向,
    #决定是划分出小于value的数据样本还是大于value的数据样本集
    def splitContinuousDataSet(dataSet,axis,value,direction):
      retDataSet=[]
      for featVec in dataSet:
        if direction==0:
          if featVec[axis]>value:
            reducedFeatVec=featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
        else:
          if featVec[axis]<=value:
            reducedFeatVec=featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
      return retDataSet

    #选择最好的数据集划分方式
    def chooseBestFeatureToSplit(dataSet,labels):
      numFeatures=len(dataSet[0])-1
      baseEntropy=calcShannonEnt(dataSet)
      bestInfoGain=0.0
      bestFeature=-1
      bestSplitDict={}
      for i in range(numFeatures):
        featList=[example[i] for example in dataSet]
        #对连续型特征进行处理
        if type(featList[0]).__name__=='float' or type(featList[0]).__name__=='int':
          #产生n-1个候选划分点
          sortfeatList=sorted(featList)
          splitList=[]
          for j in range(len(sortfeatList)-1):
            splitList.append((sortfeatList[j]+sortfeatList[j+1])/2.0)

          bestSplitEntropy=10000
          slen=len(splitList)
          #求用第j个候选划分点划分时,得到的信息熵,并记录最佳划分点
          for j in range(slen):
            value=splitList[j]
            newEntropy=0.0
            subDataSet0=splitContinuousDataSet(dataSet,i,value,0)
            subDataSet1=splitContinuousDataSet(dataSet,i,value,1)
            prob0=len(subDataSet0)/float(len(dataSet))
            newEntropy+=prob0*calcShannonEnt(subDataSet0)
            prob1=len(subDataSet1)/float(len(dataSet))
            newEntropy+=prob1*calcShannonEnt(subDataSet1)
            if newEntropy<bestSplitEntropy:
              bestSplitEntropy=newEntropy
              bestSplit=j
          #用字典记录当前特征的最佳划分点
          bestSplitDict[labels[i]]=splitList[bestSplit]
          infoGain=baseEntropy-bestSplitEntropy
        #对离散型特征进行处理
        else:
          uniqueVals=set(featList)
          newEntropy=0.0
          #计算该特征下每种划分的信息熵
          for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt(subDataSet)
          infoGain=baseEntropy-newEntropy
        if infoGain>bestInfoGain:
          bestInfoGain=infoGain
          bestFeature=i
      #若当前节点的最佳划分特征为连续特征,则将其以之前记录的划分点为界进行二值化处理
      #即是否小于等于bestSplitValue
      if type(dataSet[0][bestFeature]).__name__=='float' or type(dataSet[0][bestFeature]).__name__=='int':
        bestSplitValue=bestSplitDict[labels[bestFeature]]
        labels[bestFeature]=labels[bestFeature]+'<='+str(bestSplitValue)
        for i in range(shape(dataSet)[0]):
          if dataSet[i][bestFeature]<=bestSplitValue:
            dataSet[i][bestFeature]=1
          else:
            dataSet[i][bestFeature]=0
      return bestFeature

    #特征若已经划分完,节点下的样本还没有统一取值,则需要进行投票
    def majorityCnt(classList):
      classCount={}
      for vote in classList:
        if vote not in classCount.keys():
          classCount[vote]=0
        classCount[vote]+=1
      return max(classCount)

    #主程序,递归产生决策树
    def createTree(dataSet,labels,data_full,labels_full):
      classList=[example[-1] for example in dataSet]
      if classList.count(classList[0])==len(classList):
        return classList[0]
      if len(dataSet[0])==1:
        return majorityCnt(classList)
      bestFeat=chooseBestFeatureToSplit(dataSet,labels)
      bestFeatLabel=labels[bestFeat]
      myTree={bestFeatLabel:{}}
      featValues=[example[bestFeat] for example in dataSet]
      uniqueVals=set(featValues)
      if type(dataSet[0][bestFeat]).__name__=='str':
        currentlabel=labels_full.index(labels[bestFeat])
        featValuesFull=[example[currentlabel] for example in data_full]
        uniqueValsFull=set(featValuesFull)
      del(labels[bestFeat])
      #针对bestFeat的每个取值,划分出一个子树。
      for value in uniqueVals:
        subLabels=labels[:]
        if type(dataSet[0][bestFeat]).__name__=='str':
          uniqueValsFull.remove(value)
        myTree[bestFeatLabel][value]=createTree(splitDataSet\
         (dataSet,bestFeat,value),subLabels,data_full,labels_full)
      if type(dataSet[0][bestFeat]).__name__=='str':
        for value in uniqueValsFull:
          myTree[bestFeatLabel][value]=majorityCnt(classList)
      return myTree

    import matplotlib.pyplot as plt
    decisionNode=dict(boxstyle="sawtooth",fc="0.8")
    leafNode=dict(boxstyle="round4",fc="0.8")
    arrow_args=dict(arrowstyle="<-")


    #计算树的叶子节点数量
    def getNumLeafs(myTree):
      numLeafs=0
      firstSides = list(myTree.keys())
      firstStr=firstSides[0]
      secondDict=myTree[firstStr]
      for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
          numLeafs+=getNumLeafs(secondDict[key])
        else: numLeafs+=1
      return numLeafs

    #计算树的最大深度
    def getTreeDepth(myTree):
      maxDepth=0
      firstSides = list(myTree.keys())
      firstStr=firstSides[0]
      secondDict=myTree[firstStr]
      for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
          thisDepth=1+getTreeDepth(secondDict[key])
        else: thisDepth=1
        if thisDepth>maxDepth:
          maxDepth=thisDepth
      return maxDepth

    #画节点
    def plotNode(nodeTxt,centerPt,parentPt,nodeType):
      createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',\
      xytext=centerPt,textcoords='axes fraction',va="center", ha="center",\
      bbox=nodeType,arrowprops=arrow_args)

    #画箭头上的文字
    def plotMidText(cntrPt,parentPt,txtString):
      lens=len(txtString)
      xMid=(parentPt[0]+cntrPt[0])/2.0-lens*0.002
      yMid=(parentPt[1]+cntrPt[1])/2.0
      createPlot.ax1.text(xMid,yMid,txtString)

    def plotTree(myTree,parentPt,nodeTxt):
      numLeafs=getNumLeafs(myTree)
      depth=getTreeDepth(myTree)
      firstSides = list(myTree.keys())
      firstStr=firstSides[0]
      cntrPt=(plotTree.x0ff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff)
      plotMidText(cntrPt,parentPt,nodeTxt)
      plotNode(firstStr,cntrPt,parentPt,decisionNode)
      secondDict=myTree[firstStr]
      plotTree.y0ff=plotTree.y0ff-1.0/plotTree.totalD
      for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
          plotTree(secondDict[key],cntrPt,str(key))
        else:
          plotTree.x0ff=plotTree.x0ff+1.0/plotTree.totalW
          plotNode(secondDict[key],(plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode)
          plotMidText((plotTree.x0ff,plotTree.y0ff),cntrPt,str(key))
      plotTree.y0ff=plotTree.y0ff+1.0/plotTree.totalD

    def createPlot(inTree):
      fig=plt.figure(1,facecolor='white')
      fig.clf()
      axprops=dict(xticks=[],yticks=[])
      createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
      plotTree.totalW=float(getNumLeafs(inTree))
      plotTree.totalD=float(getTreeDepth(inTree))
      plotTree.x0ff=-0.5/plotTree.totalW
      plotTree.y0ff=1.0
      plotTree(inTree,(0.5,1.0),'')
      plt.show()

    df=pd.read_csv('watermelon_4_3.csv')
    data=df.values[:,1:].tolist()
    data_full=data[:]
    labels=df.columns.values[1:-1].tolist()
    labels_full=labels[:]
    myTree=createTree(data,labels,data_full,labels_full)
    print(myTree)
    createPlot(myTree)

最终结果如下:

{'texture': {'blur': 0, 'little_blur': {'touch': {'soft_stick': 1, 'hard_smooth': 0}}, 'distinct': {'density<=0.38149999999999995': {0: 1, 1: 0}}}}

得到的决策树如下:

参考资料:

《机器学习实战》

《机器学习》周志华著

以上这篇基于ID3决策树算法的实现(Python版)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8