理解矩阵乘法

989次阅读  |  发布于5年以前

大多数人在高中,或者大学低年级,都上过一门课《线性代数》。这门课其实是教矩阵。

刚学的时候,还蛮简单的,矩阵加法就是相同位置的数字加一下。

矩阵减法也类似。

矩阵乘以一个常数,就是所有位置都乘以这个数。

但是,等到矩阵乘以矩阵的时候,一切就不一样了。

这个结果是怎么算出来的?

教科书告诉你,计算规则是,第一个矩阵第一行的每个数字(2和1),各自乘以第二个矩阵第一列对应位置的数字(1和1),然后将乘积相加( 2 x 1 + 1 x 1),得到结果矩阵左上角的那个值3。

也就是说,结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和。

怎么会有这么奇怪的规则?

我一直没理解这个规则的含义,导致《线性代数》这门课就没学懂。研究生时发现,线性代数是向量计算的基础,很多重要的数学模型都要用到向量计算,所以我做不了复杂模型。这一直让我有点伤心。

前些日子,受到一篇文章的启发,我终于想通了,矩阵乘法到底是什么东西。关键就是一句话,矩阵的本质就是线性方程式,两者是一一对应关系。如果从线性方程式的角度,理解矩阵乘法就毫无难度。

下面是一组线性方程式。

矩阵的最初目的,只是为线性方程组提供一个简写形式。

老实说,从上面这种写法,已经能看出矩阵乘法的规则了:系数矩阵第一行的2和1,各自与 x 和 y 的乘积之和,等于3。不过,这不算严格的证明,只是线性方程式转为矩阵的书写规则。

下面才是严格的证明。有三组未知数 x、y 和 t,其中 x 和 y 的关系如下。

x 和 t 的关系如下。

有了这两组方程式,就可以求 y 和 t 的关系。从矩阵来看,很显然,只要把第二个矩阵代入第一个矩阵即可。

从方程式来看,也可以把第二个方程组代入第一个方程组。

上面的方程组可以整理成下面的形式。

最后那个矩阵等式,与前面的矩阵等式一对照,就会得到下面的关系。

矩阵乘法的计算规则,从而得到证明。

=========================================

以下为广告部分。欢迎大家在我的网络日志投放广告。

[赞助商广告]

如果你想换工作,花五分钟,浏览一下 100offer,也许人生从此就会不同。

100offer 的目标是,只要你有2年以上的互联网工作经验(一线互联网公司更好),它就极有可能帮你拿到年薪 20W--80W 的 Offer。

它最近对514位用户的一份实证分析,有两点发现。

    (1)所有离职的工程师之中,BAT员工最受欢迎,新工作的薪酬通常可以翻番。
    (2)只有40%的程序员跳槽去了C轮、D轮和上市公司,其余60%都去了天使轮、A轮和B轮的公司,其中不乏资深的高级程序员。原因是这些创业公司刚刚起步、产品模式初步得到认可,上升空间大、技术人才需求量大、愿意给出较多的期权。

结合上面两点,年青程序员可以这样设计自己的职业生涯:

1、至少有一次大公司的成功工作经历。

所谓"成功",是指参与过知名的产品开发或主力项目经验。这一般代表你已经具备:良好的代码规范、团队协作能力、与大牛一起工作的开阔眼界成熟的技术体系。

2、然后,加入一家高速发展的创业公司。

100offer 帮助你实现这条职业道路。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8