python并发编程之多进程、多线程、异步和协程详解

1044次阅读  |  发布于5年以前

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。
一、多线程

多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果。

多线程相当于一个并发(concunrrency)系统。并发系统一般同时执行多个任务。如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完,另一个指令,多个窗口同时卖票,可能出现卖出不存在的票。

在并发情况下,指令执行的先后顺序由内核决定。同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清除哪一个会先执行。因此要考虑多线程同步的问题。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。

1、thread模块

2、threading模块
threading.Thread 创建一个线程。

给判断是否有余票和卖票,加上互斥锁,这样就不会造成一个线程刚判断没有余票,而另外一个线程就执行卖票操作。


    #! /usr/bin/python
    #-* coding: utf-8 -*
    # __author__ ="tyomcat"
    import threading
    import time
    import os

    def booth(tid):
      global i
      global lock
      while True:
        lock.acquire()
        if i!=0:
          i=i-1
          print "窗口:",tid,",剩余票数:",i
          time.sleep(1)
        else:
          print "Thread_id",tid,"No more tickets"
          os._exit(0)
        lock.release()
        time.sleep(1)

    i = 100
    lock=threading.Lock()

    for k in range(10):

      new_thread = threading.Thread(target=booth,args=(k,))
      new_thread.start()

二、协程(又称微线程,纤程)

协程,与线程的抢占式调度不同,它是协作式调度。协程也是单线程,但是它能让原来要使用异步+回调方式写的非人类代码,可以用看似同步的方式写出来。

1、协程在python中可以由生成器(generator)来实现。

首先要对生成器和yield有一个扎实的理解.

调用一个普通的python函数,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数执行(也可以认为是隐式地返回了None)。

一旦函数将控制权交还给调用者,就意味着全部结束。而有时可以创建能产生一个序列的函数,来"保存自己的工作",这就是生成器(使用了yield关键字的函数)。

能够"产生一个序列"是因为函数并没有像通常意义那样返回。return隐含的意思是函数正将执行代码的控制权返回给函数被调用的地方。而"yield"的隐含意思是控制权的转移是临时和自愿的,我们的函数将来还会收回控制权。

看一下生产者/消费者的例子:


    #! /usr/bin/python
    #-* coding: utf-8 -*
    # __author__ ="tyomcat"
    import time
    import sys
    # 生产者
    def produce(l):
      i=0
      while 1:
        if i < 10:
          l.append(i)
          yield i
          i=i+1
          time.sleep(1)
        else:
          return   
    # 消费者
    def consume(l):
      p = produce(l)
      while 1:
        try:
          p.next()
          while len(l) > 0:
            print l.pop()
        except StopIteration:
          sys.exit(0)
    if __name__ == "__main__":
      l = []
      consume(l)

当程序执行到produce的yield i时,返回了一个generator并暂停执行,当我们在custom中调用p.next(),程序又返回到produce的yield i 继续执行,这样 l 中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

2、Stackless Python

3、greenlet模块

基于greenlet的实现则性能仅次于Stackless Python,大致比Stackless Python慢一倍,比其他方案快接近一个数量级。其实greenlet不是一种真正的并发机制,而是在同一线程内,在不同函数的执行代码块之间切换,实施"你运行一会、我运行一会",并且在进行切换时必须指定何时切换以及切换到哪。

4、eventlet模块

三、多进程
1、子进程(subprocess包)

在python中,通过subprocess包,fork一个子进程,并运行外部程序。

调用系统的命令的时候,最先考虑的os模块。用os.system()和os.popen()来进行操作。但是这两个命令过于简单,不能完成一些复杂的操作,如给运行的命令提供输入或者读取命令的输出,判断该命令的运行状态,管理多个命令的并行等等。这时subprocess中的Popen命令就能有效的完成我们需要的操作


    >>>import subprocess
    >>>command_line=raw_input()
    ping -c 10 www.baidu.com
    >>>args=shlex.split(command_line)
    >>>p=subprocess.Popen(args)

利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):


    import subprocess
    child1 = subprocess.Popen(["ls","-l"], stdout=subprocess.PIPE)
    child2 = subprocess.Popen(["wc"], stdin=child1.stdout,stdout=subprocess.PIPE)
    out = child2.communicate()
    print(out)

communicate() 方法从stdout和stderr中读出数据,并输入到stdin中。

2、多进程(multiprocessing包)

(1)、multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。

进程池 (Process Pool)可以创建多个进程。

apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。

close() 进程池不再创建新的进程

join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。


    #! /usr/bin/env python
    # -*- coding:utf-8  -*-
    # __author__ == "tyomcat"
    # "我的电脑有4个cpu"

    from multiprocessing import Pool
    import os, time

    def long_time_task(name):
      print 'Run task %s (%s)...' % (name, os.getpid())
      start = time.time()
      time.sleep(3)
      end = time.time()
      print 'Task %s runs %0.2f seconds.' % (name, (end - start))

    if __name__=='__main__':
      print 'Parent process %s.' % os.getpid()
      p = Pool()
      for i in range(4):
        p.apply_async(long_time_task, args=(i,))
      print 'Waiting for all subprocesses done...'
      p.close()
      p.join()
      print 'All subprocesses done.'

(2)、多进程共享资源

通过共享内存和Manager对象:用一个进程作为服务器,建立Manager来真正存放资源。

其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。


    #! /usr/bin/env python
    # -*- coding:utf-8  -*-
    # __author__ == "tyomcat"

    from multiprocessing import Queue,Pool
    import multiprocessing,time,random

    def write(q):

      for value in ['A','B','C','D']:
        print "Put %s to Queue!" % value
        q.put(value)
        time.sleep(random.random())


    def read(q,lock):
      while True:
        lock.acquire()
        if not q.empty():
          value=q.get(True)
          print "Get %s from Queue" % value
          time.sleep(random.random())
        else:
          break
        lock.release()

    if __name__ == "__main__":
      manager=multiprocessing.Manager()
      q=manager.Queue()
      p=Pool()
      lock=manager.Lock()
      pw=p.apply_async(write,args=(q,))
      pr=p.apply_async(read,args=(q,lock))
      p.close()
      p.join()
      print
      print "所有数据都写入并且读完"

四、异步

无论是线程还是进程,使用的都是同步进制,当发生阻塞时,性能会大幅度降低,无法充分利用CPU潜力,浪费硬件投资,更重要造成软件模块的铁板化,紧耦合,无法切割,不利于日后扩展和变化。

不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。多个线程之间在一些访问互斥的代码时还需要加上锁,

现下流行的异步server都是基于事件驱动的(如nginx)。

异步事件驱动模型中,把会导致阻塞的操作转化为一个异步操作,主线程负责发起这个异步操作,并处理这个异步操作的结果。由于所有阻塞的操作都转化为异步操作,理论上主线程的大部分时间都是在处理实际的计算任务,少了多线程的调度时间,所以这种模型的性能通常会比较好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8