利用Python中的pandas库对cdn日志进行分析详解

615次阅读  |  发布于5年以前

前言

最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量、状态码统计,TOP IP、URL、UA、Referer等。以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G、行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长。于是研究了下Python pandas这个数据处理库的使用。一千万行日志,处理完成在40s左右。

代码


    #!/usr/bin/python
    # -*- coding: utf-8 -*-
    # sudo pip install pandas
    __author__ = 'Loya Chen'
    import sys
    import pandas as pd
    from collections import OrderedDict
    """
    Description: This script is used to analyse qiniu cdn log.
    ================================================================================
    日志格式
    IP - ResponseTime [time +0800] "Method URL HTTP/1.1" code size "referer" "UA"
    ================================================================================
    日志示例
     [0] [1][2]  [3]  [4]   [5]
    101.226.66.179 - 68 [16/Nov/2016:04:36:40 +0800] "GET http://www.qn.com/1.jpg -" 
    [6] [7] [8]    [9]
    200 502 "-" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
    ================================================================================
    """
    if len(sys.argv) != 2:
     print('Usage:', sys.argv[0], 'file_of_log')
     exit() 
    else:
     log_file = sys.argv[1] 
    # 需统计字段对应的日志位置 
    ip  = 0
    url  = 5
    status_code = 6
    size = 7
    referer = 8
    ua  = 9
    # 将日志读入DataFrame
    reader = pd.read_table(log_file, sep=' ', names=[i for i in range(10)], iterator=True)
    loop = True
    chunkSize = 10000000
    chunks = []
    while loop:
     try:
     chunk = reader.get_chunk(chunkSize)
     chunks.append(chunk)
     except StopIteration:
     #Iteration is stopped.
     loop = False
    df = pd.concat(chunks, ignore_index=True)
    byte_sum = df[size].sum()        #流量统计
    top_status_code = pd.DataFrame(df[6].value_counts())      #状态码统计
    top_ip  = df[ip].value_counts().head(10)      #TOP IP
    top_referer = df[referer].value_counts().head(10)      #TOP Referer
    top_ua  = df[ua].value_counts().head(10)      #TOP User-Agent
    top_status_code['persent'] = pd.DataFrame(top_status_code/top_status_code.sum()*100)
    top_url  = df[url].value_counts().head(10)      #TOP URL
    top_url_byte = df[[url,size]].groupby(url).sum().apply(lambda x:x.astype(float)/1024/1024) \
       .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最大的URL
    top_ip_byte = df[[ip,size]].groupby(ip).sum().apply(lambda x:x.astype(float)/1024/1024) \
       .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最多的IP
    # 将结果有序存入字典
    result = OrderedDict([("流量总计[单位:GB]:"   , byte_sum/1024/1024/1024),
       ("状态码统计[次数|百分比]:"  , top_status_code),
       ("IP TOP 10:"    , top_ip),
       ("Referer TOP 10:"   , top_referer),
       ("UA TOP 10:"    , top_ua),
       ("URL TOP 10:"   , top_url),
       ("请求流量最大的URL TOP 10[单位:MB]:" , top_url_byte), 
       ("请求流量最大的IP TOP 10[单位:MB]:" , top_ip_byte)
    ])
    # 输出结果
    for k,v in result.items():
     print(k)
     print(v)
     print('='*80)

pandas 学习笔记

Pandas 中有两种基本的数据结构,Series 和 Dataframe。 Series 是一种类似于一维数组的对象,由一组数据和索引组成。 Dataframe 是一个表格型的数据结构,既有行索引也有列索引。


    from pandas import Series, DataFrame
    import pandas as pd

Series


    In [1]: obj = Series([4, 7, -5, 3])
    In [2]: obj
    Out[2]: 
    0 4
    1 7
    2 -5
    3 3

Series的字符串表现形式为:索引在左边,值在右边。没有指定索引时,会自动创建一个0到N-1(N为数据的长度)的整数型索引。可以通过Series的values和index属性获取其数组表示形式和索引对象:


    In [3]: obj.values
    Out[3]: array([ 4, 7, -5, 3])
    In [4]: obj.index
    Out[4]: RangeIndex(start=0, stop=4, step=1)

通常创建Series时会指定索引:


    In [5]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
    In [6]: obj2
    Out[6]: 
    d 4
    b 7
    a -5
    c 3

通过索引获取Series中的单个或一组值:


    In [7]: obj2['a']
    Out[7]: -5
    In [8]: obj2[['c','d']]
    Out[8]: 
    c 3
    d 4

排序


    In [9]: obj2.sort_index()
    Out[9]: 
    a -5
    b 7
    c 3
    d 4
    In [10]: obj2.sort_values()
    Out[10]: 
    a -5
    c 3
    d 4
    b 7

筛选运算


    In [11]: obj2[obj2 > 0]
    Out[11]: 
    d 4
    b 7
    c 3
    In [12]: obj2 * 2
    Out[12]: 
    d 8
    b 14
    a -10
    c 6

成员


    In [13]: 'b' in obj2
    Out[13]: True
    In [14]: 'e' in obj2
    Out[14]: False

通过字典创建Series


    In [15]: sdata = {'Shanghai':35000, 'Beijing':40000, 'Nanjing':26000, 'Hangzhou':30000}
    In [16]: obj3 = Series(sdata)
    In [17]: obj3
    Out[17]: 
    Beijing 40000
    Hangzhou 30000
    Nanjing 26000
    Shanghai 35000

如果只传入一个字典,则结果Series中的索引就是原字典的键(有序排列)


    In [18]: states = ['Beijing', 'Hangzhou', 'Shanghai', 'Suzhou']
    In [19]: obj4 = Series(sdata, index=states)
    In [20]: obj4
    Out[20]: 
    Beijing 40000.0
    Hangzhou 30000.0
    Shanghai 35000.0
    Suzhou  NaN

当指定index时,sdata中跟states索引相匹配的3个值会被找出并放到响应的位置上,但由于'Suzhou'所对应的sdata值找不到,所以其结果为NaN(not a number),pandas中用于表示缺失或NA值

pandas的isnull和notnull函数可以用于检测缺失数据:


    In [21]: pd.isnull(obj4)
    Out[21]: 
    Beijing False
    Hangzhou False
    Shanghai False
    Suzhou True
    In [22]: pd.notnull(obj4)
    Out[22]: 
    Beijing True
    Hangzhou True
    Shanghai True
    Suzhou False

Series也有类似的实例方法


    In [23]: obj4.isnull()
    Out[23]: 
    Beijing False
    Hangzhou False
    Shanghai False
    Suzhou True

Series的一个重要功能是,在数据运算中,自动对齐不同索引的数据


    In [24]: obj3
    Out[24]: 
    Beijing 40000
    Hangzhou 30000
    Nanjing 26000
    Shanghai 35000
    In [25]: obj4
    Out[25]: 
    Beijing 40000.0
    Hangzhou 30000.0
    Shanghai 35000.0
    Suzhou  NaN
    In [26]: obj3 + obj4
    Out[26]: 
    Beijing 80000.0
    Hangzhou 60000.0
    Nanjing  NaN
    Shanghai 70000.0
    Suzhou  NaN

Series的索引可以通过复制的方式就地修改


    In [27]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
    In [28]: obj
    Out[28]: 
    Bob 4
    Steve 7
    Jeff -5
    Ryan 3

DataFrame

pandas读取文件


    In [29]: df = pd.read_table('pandas_test.txt',sep=' ', names=['name', 'age'])
    In [30]: df
    Out[30]: 
     name age
    0 Bob 26
    1 Loya 22
    2 Denny 20
    3 Mars 25

DataFrame列选取


    df[name]

    In [31]: df['name']
    Out[31]: 
    0 Bob
    1 Loya
    2 Denny
    3 Mars
    Name: name, dtype: object

DataFrame行选取


    df.iloc[0,:] #第一个参数是第几行,第二个参数是列。这里指第0行全部列
    df.iloc[:,0] #全部行,第0列

    In [32]: df.iloc[0,:]
    Out[32]: 
    name Bob
    age 26
    Name: 0, dtype: object
    In [33]: df.iloc[:,0]
    Out[33]: 
    0 Bob
    1 Loya
    2 Denny
    3 Mars
    Name: name, dtype: object

获取一个元素,可以通过iloc,更快的方式是iat


    In [34]: df.iloc[1,1]
    Out[34]: 22
    In [35]: df.iat[1,1]
    Out[35]: 22

DataFrame块选取


    In [36]: df.loc[1:2,['name','age']]
    Out[36]: 
     name age
    1 Loya 22
    2 Denny 20

根据条件过滤行

在方括号中加入判断条件来过滤行,条件必需返回 True 或者 False


    In [37]: df[(df.index >= 1) & (df.index <= 3)]
    Out[37]: 
     name age city
    1 Loya 22 Shanghai
    2 Denny 20 Hangzhou
    3 Mars 25 Nanjing
    In [38]: df[df['age'] > 22]
    Out[38]: 
     name age city
    0 Bob 26 Beijing
    3 Mars 25 Nanjing

增加列


    In [39]: df['city'] = ['Beijing', 'Shanghai', 'Hangzhou', 'Nanjing']
    In [40]: df
    Out[40]: 
     name age city
    0 Bob 26 Beijing
    1 Loya 22 Shanghai
    2 Denny 20 Hangzhou
    3 Mars 25 Nanjing

排序

按指定列排序


    In [41]: df.sort_values(by='age')
    Out[41]: 
     name age city
    2 Denny 20 Hangzhou
    1 Loya 22 Shanghai
    3 Mars 25 Nanjing
    0 Bob 26 Beijing

    # 引入numpy 构建 DataFrame
    import numpy as np

    In [42]: df = pd.DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'], columns=['d', 'a', 'b', 'c'])
    In [43]: df
    Out[43]: 
     d a b c
    three 0 1 2 3
    one 4 5 6 7

    # 以索引排序
    In [44]: df.sort_index()
    Out[44]: 
     d a b c
    one 4 5 6 7
    three 0 1 2 3
    In [45]: df.sort_index(axis=1)
    Out[45]: 
     a b c d
    three 1 2 3 0
    one 5 6 7 4
    # 降序
    In [46]: df.sort_index(axis=1, ascending=False)
    Out[46]: 
     d c b a
    three 0 3 2 1
    one 4 7 6 5

查看


    # 查看表头5行 
    df.head(5)
    # 查看表末5行
    df.tail(5) 
    # 查看列的名字
    In [47]: df.columns
    Out[47]: Index(['name', 'age', 'city'], dtype='object')
    # 查看表格当前的值
    In [48]: df.values
    Out[48]: 
    array([['Bob', 26, 'Beijing'],
     ['Loya', 22, 'Shanghai'],
     ['Denny', 20, 'Hangzhou'],
     ['Mars', 25, 'Nanjing']], dtype=object)

转置


    df.T
    Out[49]: 
      0  1  2 3
    name Bob Loya Denny Mars
    age 26 22 20 25
    city Beijing Shanghai Hangzhou Nanjing

使用isin


    In [50]: df2 = df.copy()
    In [51]: df2[df2['city'].isin(['Shanghai','Nanjing'])]
    Out[52]: 
     name age city
    1 Loya 22 Shanghai
    3 Mars 25 Nanjing

运算操作:


    In [53]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], 
     ...:    index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
    In [54]: df
    Out[54]: 
     one two
    a 1.40 NaN
    b 7.10 -4.5
    c NaN NaN
    d 0.75 -1.3

    #按列求和
    In [55]: df.sum()
    Out[55]: 
    one 9.25
    two -5.80
    # 按行求和
    In [56]: df.sum(axis=1)
    Out[56]: 
    a 1.40
    b 2.60
    c NaN
    d -0.55

group

group 指的如下几步:

See the Grouping section


    In [57]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
     ....:    'foo', 'bar', 'foo', 'foo'],
     ....:   'B' : ['one', 'one', 'two', 'three',
     ....:    'two', 'two', 'one', 'three'],
     ....:   'C' : np.random.randn(8),
     ....:   'D' : np.random.randn(8)})
     ....: 
    In [58]: df
    Out[58]: 
     A B  C  D
    0 foo one -1.202872 -0.055224
    1 bar one -1.814470 2.395985
    2 foo two 1.018601 1.552825
    3 bar three -0.595447 0.166599
    4 foo two 1.395433 0.047609
    5 bar two -0.392670 -0.136473
    6 foo one 0.007207 -0.561757
    7 foo three 1.928123 -1.623033

group一下,然后应用sum函数


    In [59]: df.groupby('A').sum()
    Out[59]: 
      C D
    A   
    bar -2.802588 2.42611
    foo 3.146492 -0.63958
    In [60]: df.groupby(['A','B']).sum()
    Out[60]: 
       C  D
    A B   
    bar one -1.814470 2.395985
     three -0.595447 0.166599
     two -0.392670 -0.136473
    foo one -1.195665 -0.616981
     three 1.928123 -1.623033
     two 2.414034 1.600434

总结

以上就是关于利用Python中的pandas库进行cdn日志分析的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8