详解Python中heapq模块的用法

437次阅读  |  发布于5年以前

heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2k+1] and heap[k] <= heap[2k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。

打印 heapq 类型


    import math 
    import random
    from cStringIO import StringIO

    def show_tree(tree, total_width=36, fill=' '):
       output = StringIO()
       last_row = -1
       for i, n in enumerate(tree):
         if i:
           row = int(math.floor(math.log(i+1, 2)))
         else:
           row = 0
         if row != last_row:
           output.write('\n')
         columns = 2**row
         col_width = int(math.floor((total_width * 1.0) / columns))
         output.write(str(n).center(col_width, fill))
         last_row = row
       print output.getvalue()
       print '-' * total_width
       print 
       return

    data = random.sample(range(1,8), 7)
    print 'data: ', data
    show_tree(data)

打印结果


    data: [3, 2, 6, 5, 4, 7, 1]

         3           
      2      6      
    5    4  7     1   
    -------------------------
    heapq.heappush(heap, item)

push一个元素到heap里, 修改上面的代码


    heap = []
    data = random.sample(range(1,8), 7)
    print 'data: ', data

    for i in data:
      print 'add %3d:' % i
      heapq.heappush(heap, i)
      show_tree(heap)

打印结果


    data: [6, 1, 5, 4, 3, 7, 2]
    add  6:
             6         
     ------------------------------------
    add  1:
          1 
       6         
    ------------------------------------
    add  5:
          1 
       6       5       
    ------------------------------------
    add  4:
            1 
        4       5       
      6
    ------------------------------------
    add  3:
            1 
        3       5       
      6    4
    ------------------------------------
    add  7:
            1 
        3        5       
      6    4    7
    ------------------------------------
    add  2:
            1 
        3        2       
      6    4    7    5
    ------------------------------------

根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。

heapq.heapify(list)

将list类型转化为heap, 在线性时间内, 重新排列列表。


    print 'data: ', data
    heapq.heapify(data)
    print 'data: ', data

    show_tree(data)

打印结果


    data: [2, 7, 4, 3, 6, 5, 1]
    data: [1, 3, 2, 7, 6, 5, 4]

          1         
       3         2     
    7    6    5    4  
    ------------------------------------
    heapq.heappop(heap)

删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。


    data = random.sample(range(1, 8), 7)
    print 'data: ', data
    heapq.heapify(data)
    show_tree(data)

    heap = []
    while data:
      i = heapq.heappop(data)
      print 'pop %3d:' % i
      show_tree(data)
      heap.append(i)
    print 'heap: ', heap

打印结果


    data: [4, 1, 3, 7, 5, 6, 2]

             1
        4         2
      7    5    6    3
    ------------------------------------

    pop  1:
             2
        4         3
      7    5    6
    ------------------------------------
    pop  2:
             3
        4         6
      7    5
    ------------------------------------
    pop  3:
             4
        5         6
      7
    ------------------------------------
    pop  4:
             5
        7         6
    ------------------------------------
    pop  5:
             6
        7
    ------------------------------------
    pop  6:
            7
    ------------------------------------
    pop  7:

    ------------------------------------
    heap: [1, 2, 3, 4, 5, 6, 7]

可以看到已排好序的heap。

heapq.heapreplace(iterable, n)

删除现有元素并将其替换为一个新值。


    data = random.sample(range(1, 8), 7)
    print 'data: ', data
    heapq.heapify(data)
    show_tree(data)

    for n in [8, 9, 10]:
      smallest = heapq.heapreplace(data, n)
      print 'replace %2d with %2d:' % (smallest, n)
      show_tree(data)

打印结果


    data: [7, 5, 4, 2, 6, 3, 1]

             1
        2         3
      5    6    7    4
    ------------------------------------

    replace 1 with 8:

             2
        5         3
      8    6    7    4
    ------------------------------------

    replace 2 with 9:

             3
        5         4
      8    6    7    9
    ------------------------------------

    replace 3 with 10:

             4
        5         7
      8    6    10    9
    ------------------------------------

heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)

返回列表中的n个最大值和最小值


    data = range(1,6)
    l = heapq.nlargest(3, data)
    print l     # [5, 4, 3]

    s = heapq.nsmallest(3, data)
    print s     # [1, 2, 3]

PS:一个计算题
构建元素个数为 K=5 的最小堆代码实例:


    #!/usr/bin/env python 
    # -*- encoding: utf-8 -*- 
    # Author: kentzhan 
    # 

    import heapq 
    import random 

    heap = [] 
    heapq.heapify(heap) 
    for i in range(15): 
     item = random.randint(10, 100) 
     print "comeing ", item, 
     if len(heap) >= 5: 
      top_item = heap[0] # smallest in heap 
      if top_item < item: # min heap 
       top_item = heapq.heappop(heap) 
       print "pop", top_item, 
       heapq.heappush(heap, item) 
       print "push", item, 
     else: 
      heapq.heappush(heap, item) 
      print "push", item, 
     pass 
     print heap 
    pass 
    print heap 

    print "sort" 
    heap.sort() 

    print heap 

结果:

2016628172708102.png \(550×363\)

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8