贝叶斯推断及其互联网应用(三):拼写检查

1113次阅读  |  发布于5年以前

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分。)

使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法。

比如,你不小心输入了seperate。

Google告诉你,这个词是不存在的,正确的拼法是separate。

这就叫做"拼写检查"(spelling corrector)。有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法。这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上)。Google的研发总监Peter Norvig,写过一篇著名的文章,解释这种方法的原理。

下面我们就来看看,怎么利用贝叶斯推断,实现"拼写检查"。其实很简单,一小段代码就够了。

一、原理

用户输入了一个单词。这时分成两种情况:拼写正确,或者拼写不正确。我们把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong)。

所谓"拼写检查",就是在发生w的情况下,试图推断出c。从概率论的角度看,就是已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求下面这个式子的最大值。

      P(c|w)

根据贝叶斯定理:

      P(c|w) =  P(w|c) * P(c)  / P(w)

对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们求的其实是

      P(w|c) * P(c)

的最大值。

P(c)的含义是,某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

P(w|c)的含义是,在试图拼写c的情况下,出现拼写错误w的概率。这需要统计数据的支持,但是为了简化问题,我们假设两个单词在字形上越接近,就有越可能拼错,P(w|C)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词hello,那么错误拼成hallo(相差一个字母)的可能性,就比拼成haallo高(相差两个字母)。

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现 P(w|c) * P(c) 的最大值。

二、算法

最简单的算法,只需要四步就够了。

第一步,建立一个足够大的文本库。

网上有一些免费来源,比如古登堡计划、Wiktionary、英国国家语料库等等。

第二步,取出文本库的每一个单词,统计它们的出现频率。

第三步,根据用户输入的单词,得到其所有可能的拼写相近的形式。

所谓"拼写相近",指的是两个单词之间的"编辑距离"(edit distance)不超过2。也就是说,两个词只相差1到2个字母,只通过----删除、交换、更改和插入----这四种操作中的一种,就可以让一个词变成另一个词。

第四步,比较所有拼写相近的词在文本库的出现频率。频率最高的那个词,就是正确的拼法。

根据Peter Norvig的验证,这种算法的精确度大约为60%-70%(10个拼写错误能够检查出6个。)虽然不令人满意,但是能够接受。毕竟它足够简单,计算速度极快。(本文的最后部分,将详细讨论这种算法的缺陷在哪里。)

三、代码

我们使用Python语言,实现上一节的算法。

第一步,把网上下载的文本库保存为big.txt文件。这步不需要编程。

第二步,加载Python的正则语言模块(re)和collections模块,后面要用到。

      import re, collections

第三步,定义words()函数,用来取出文本库的每一个词。

      def words(text): return re.findall('[a-z]+', text.lower())

lower()将所有词都转成小写,避免因为大小写不同,而被算作两个词。

第四步,定义一个train()函数,用来建立一个"字典"结构。文本库的每一个词,都是这个"字典"的键;它们所对应的值,就是这个词在文本库的出现频率。

      def train(features):
        model = collections.defaultdict(lambda: 1)
        for f in features:
          model[f] += 1
        return model

collections.defaultdict(lambda: 1)的意思是,每一个词的默认出现频率为1。这是针对那些没有出现在文本库的词。如果一个词没有在文本库出现,我们并不能认定它就是一个不存在的词,因此将每个词出现的默认频率设为1。以后每出现一次,频率就增加1。

第五步,使用words()和train()函数,生成上一步的"词频字典",放入变量NWORDS。

      NWORDS = train(words(file('big.txt').read()))

第六步,定义edits1()函数,用来生成所有与输入参数word的"编辑距离"为1的词。

      alphabet = 'abcdefghijklmnopqrstuvwxyz'
      def edits1(word):
        splits     = [(word[:i], word[i:]) for i in range(len(word) + 1)]
        deletes    = [a + b[1:] for a, b in splits if b]
        transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]
        replaces   = [a + c + b[1:] for a, b in splits for c in alphabet if b]
        inserts    = [a + c + b     for a, b in splits for c in alphabet]
        return set(deletes + transposes + replaces + inserts)

edit1()函数中的几个变量的含义如下:

      (1)**splits**:将word依次按照每一位分割成前后两半。比如,'abc'会被分割成 [('', 'abc'), ('a', 'bc'), ('ab', 'c'), ('abc', '')] 。
      (2)**beletes**:依次删除word的每一位后、所形成的所有新词。比如,'abc'对应的deletes就是 ['bc', 'ac', 'ab'] 。
      (3)**transposes**:依次交换word的邻近两位,所形成的所有新词。比如,'abc'对应的transposes就是  ['bac', 'acb'] 。
      (4)**replaces**:将word的每一位依次替换成其他25个字母,所形成的所有新词。比如,'abc'对应的replaces就是 ['abc', 'bbc', 'cbc', ... , 'abx', ' aby', 'abz' ] ,一共包含78个词(26 ×  3)。
      (5)**inserts**:在word的邻近两位之间依次插入一个字母,所形成的所有新词。比如,'abc' 对应的inserts就是['aabc', 'babc', 'cabc', ..., 'abcx', 'abcy', 'abcz'],一共包含104个词(26 × 4)。

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8