Python的MongoDB模块PyMongo操作方法集锦

817次阅读  |  发布于5年以前

开始之前当然要导入模块啦:


    >>> import pymongo

下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。

建立于MongoClient 的连接:


    client = MongoClient('localhost', 27017)
    # 或者
    client = MongoClient('mongodb://localhost:27017/')

得到数据库:


    >>> db = client.test_database
    # 或者
    >>> db = client['test-database']

得到一个数据集合:


    collection = db.test_collection
    # 或者
    collection = db['test-collection']

MongoDB中的数据使用的是类似Json风格的文档:


    >>> import datetime
    >>> post = {"author": "Mike",
    ...     "text": "My first blog post!",
    ...     "tags": ["mongodb", "python", "pymongo"],
    ...     "date": datetime.datetime.utcnow()}

插入一个文档:


    >>> posts = db.posts
    >>> post_id = posts.insert_one(post).inserted_id
    >>> post_id
    ObjectId('...')

找一条数据:


    >>> posts.find_one()
    {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

    >>> posts.find_one({"author": "Mike"})
    {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

    >>> posts.find_one({"author": "Eliot"})
    >>>

通过ObjectId来查找:


    >>> post_id
    ObjectId(...)
    >>> posts.find_one({"_id": post_id})
    {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

不要转化ObjectId的类型为String:


    >>> post_id_as_str = str(post_id)
    >>> posts.find_one({"_id": post_id_as_str}) # No result
    >>>

如果你有一个post_id字符串,怎么办呢?


    from bson.objectid import ObjectId

    # The web framework gets post_id from the URL and passes it as a string
    def get(post_id):
      # Convert from string to ObjectId:
      document = client.db.collection.find_one({'_id': ObjectId(post_id)})

多条插入:


    >>> new_posts = [{"author": "Mike",
    ...        "text": "Another post!",
    ...        "tags": ["bulk", "insert"],
    ...        "date": datetime.datetime(2009, 11, 12, 11, 14)},
    ...       {"author": "Eliot",
    ...        "title": "MongoDB is fun",
    ...        "text": "and pretty easy too!",
    ...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]
    >>> result = posts.insert_many(new_posts)
    >>> result.inserted_ids
    [ObjectId('...'), ObjectId('...')]

查找多条数据:


    >>> for post in posts.find():
    ...  post
    ...
    {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
    {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
    {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

当然也可以约束查找条件:


    >>> for post in posts.find({"author": "Mike"}):
    ...  post
    ...
    {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
    {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

获取集合的数据条数:


    >>> posts.count()

或者说满足某种查找条件的数据条数:


    >>> posts.find({"author": "Mike"}).count()

范围查找,比如说时间范围:


    >>> d = datetime.datetime(2009, 11, 12, 12)
    >>> for post in posts.find({"date": {"$lt": d}}).sort("author"):
    ...  print post
    ...
    {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
    {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:


    >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
    u'BasicCursor'
    >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:


    >>> from pymongo import ASCENDING, DESCENDING
    >>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
    u'date_-1_author_1'
    >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
    u'BtreeCursor date_-1_author_1'
    >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]


连接聚集


    >>> account = db.Account
    #或 
    >>> account = db["Account"]

查看全部聚集名称


    >>> db.collection_names()

查看聚集的一条记录


    >>> db.Account.find_one()


    >>> db.Account.find_one({"UserName":"keyword"})

查看聚集的字段


    >>> db.Account.find_one({},{"UserName":1,"Email":1})
    {u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'}


    >>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0})
    {u'UserName': u'libing', u'Email': u'libing@35.cn'}

查看聚集的多条记录


    >>> for item in db.Account.find():
        item


    >>> for item in db.Account.find({"UserName":"libing"}):
        item["UserName"]

查看聚集的记录统计


    >>> db.Account.find().count()


    >>> db.Account.find({"UserName":"keyword"}).count()

聚集查询结果排序


    >>> db.Account.find().sort("UserName") #默认为升序
    >>> db.Account.find().sort("UserName",pymongo.ASCENDING)  #升序
    >>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序

聚集查询结果多列排序


    >>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

添加记录


    >>> db.Account.insert({"AccountID":21,"UserName":"libing"})

修改记录


    >>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

删除记录


    >>> db.Account.remove()  -- 全部删除


    >>> db.Test.remove({"UserName":"keyword"})

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8